ﻻ يوجد ملخص باللغة العربية
Consider the energy-critical focusing wave equation in odd space dimension $Ngeq 3$. The equation has a nonzero radial stationary solution $W$, which is unique up to scaling and sign change. In this paper we prove that any radial, bounded in the energy norm solution of the equation behaves asymptotically as a sum of modulated $W$s, decoupled by the scaling, and a radiation term. The proof essentially boils down to the fact that the equation does not have purely nonradiative multisoliton solutions. The proof overcomes the fundamental obstruction for the extension of the 3D case (treated in our previous work, Cambridge Journal of Mathematics 2013, arXiv:1204.0031) by reducing the study of a multisoliton solution to a finite dimensional system of ordinary differential equations on the modulation parameters. The key ingredient of the proof is to show that this system of equations creates some radiation, contradicting the existence of pure multisolitons.
Consider a finite energy radial solution to the focusing energy critical semilinear wave equation in 1+4 dimensions. Assume that this solution exhibits type-II behavior, by which we mean that the critical Sobolev norm of the evolution stays bounded o
We consider co-rotational wave maps from the $(1+d)$-dimensional Minkowski space into the $d$-sphere for $dgeq 3$ odd. This is an energy-supercritical model which is known to exhibit finite-time blowup via self-similar solutions. Based on a method de
We get a local existence result in $H^s$ with $s>3/2$ for second order quasilinear wave equation with radial initial data in 2+1 dimensions, based on an improvement of Strichartz estimate in the radial case. Moreover, we get the corresponding local w
In this work, the $overline{partial}$ steepest descent method is employed to investigate the soliton resolution for the Hirota equation with the initial value belong to weighted Sobolev space $H^{1,1}(mathbb{R})={fin L^{2}(mathbb{R}): f,xfin L^{2}(ma
We consider the wave equation with a focusing cubic nonlinearity in higher odd space dimensions without symmetry restrictions on the data. We prove that there exists an open set of initial data such that the corresponding solution exists in a backwar