ﻻ يوجد ملخص باللغة العربية
By definition, the exterior asymptotic energy of a solution to a wave equation on $mathbb{R}^{1+N}$ is the sum of the limits as $tto pminfty$ of the energy in the the exterior ${|x|>|t|}$ of the wave cone. In our previous work (JEMS 2012, arXiv:1003.0625), we have proved that the exterior asymptotic energy of a solution of the linear wave equation in odd space dimension $N$ is bounded from below by the conserved energy of the solution. In this article, we study the analogous problem for the linear wave equation with a potential begin{equation} label{abstractLW} tag{*} partial_t^2u+L_Wu=0,quad L_W:=-Delta -frac{N+2}{N-2}W^{frac{4}{N-2}} end{equation} obtained by linearizing the energy critical wave equation at the ground-state solution $W$, still in odd space dimension. This equation admits nonzero solutions of the form $A+tB$, where $L_WA=L_WB=0$ with vanishing asymptotic exterior energy. We prove that the exterior energy of a solution of eqref{abstractLW} is bounded from below by the energy of the projection of the initial data on the orthogonal complement of the space of initial data corresponding to these solutions. This will be used in a subsequent paper to prove soliton resolution for the energy-critical wave equation with radial data in all odd space dimensions. We also prove analogous results for the linearization of the energy-critical wave equation around a Lorentz transform of $W$, and give applications to the dynamics of the nonlinear equation close to the ground state in space dimensions $3$ and $5$.
Consider the focusing energy critical Schrodinger equation in three space dimensions with radial initial data in the energy space. We describe the global dynamics of all the solutions of which the energy is at most slightly larger than that of the gr
Consider a finite energy radial solution to the focusing energy critical semilinear wave equation in 1+4 dimensions. Assume that this solution exhibits type-II behavior, by which we mean that the critical Sobolev norm of the evolution stays bounded o
We consider the energy-critical non-linear focusing wave equation in dimension N=3,4,5. An explicit stationnary solution, $W$, of this equation is known. The energy E(W,0) has been shown by C. Kenig and F. Merle to be a threshold for the dynamical be
Consider the energy-critical focusing wave equation in space dimension $Ngeq 3$. The equation has a nonzero radial stationary solution $W$, which is unique up to scaling and sign change. It is conjectured (soliton resolution) that any radial, bounded
For the 5D energy-critical wave equation, we construct excited $N$-solitons with collinear speeds, i.e. solutions $u$ of the equation such that begin{equation*} lim_{tto+infty}bigg| abla_{t,x}u(t)- abla_{t,x}bigg(sum_{n=1}^{N}Q_{n}(t)bigg)bigg|_{