ﻻ يوجد ملخص باللغة العربية
The potential association between the blazar TXS 0506+056 and the neutrino event IceCube-170922A provides a unique opportunity to study the possible physical connection between the high-energy photons and neutrinos. We explore the correlated electromagnetic and neutrino emissions of blazar TXS 0506+056 by a self-consistent leptonic-hadronic model, taking into account particle stochastic acceleration and all relevant radiative processes self-consistently. The electromagnetic and neutrino spectra of blazar TXS 0506+056 are reproduced by the proton synchrotron and hybrid leptonic-hadronic models based on the proton-photon interactions. It is found that the hybrid leptonic-hadronic model can be used to better explain the observed X-ray and $gamma$-ray spectra of blazar TXS 0506+056 than the proton synchrotron model. Moreover, the predicted neutrino spectrum of the hybrid leptonic-hadronic model is closer to the observed one compared to the proton synchrotron model. We suggest that the hybrid leptonic-hadronic model is more favored if the neutrino event IceCube-170922A is associated with the blazar TXS 0506+056.
While active galactic nuclei with relativistic jets have long been prime candidates for the origin of extragalactic cosmic rays and neutrinos, the BL Lac object TXS 0506+056 is the first astrophysical source observed to be associated with some confid
TXS 0506+056 is a blazar that has been recently identified as the counterpart of the neutrino event IceCube-170922A. Understanding blazar type of TXS 0506+056 is important to constrain the neutrino emission mechanism, but the blazar nature of TXS 050
The IceCube collaboration reported a $sim 3.5sigma$ excess of $13pm5$ neutrino events in the direction of the blazar TXS 0506+56 during a $sim$6 month period in 2014-2015, as well as the ($sim3sigma$) detection of a high-energy muon neutrino during a
The IceCube instrument detected a high-energy cosmic neutrino event on 2017 September 22 (IceCube_170922A, IceCube Collaboration 2018), which the electromagnetic follow-up campaigns associated with the flaring $gamma$-ray blazar TXS 0506$+$056 (e.g.,
Motivated by the observation of a $>290$ TeV muon neutrino by IceCube, coincident with a $sim$6 month-long $gamma$-ray flare of the blazar TXS 0506+056, and an archival search which revealed $13 pm 5$ further, lower-energy neutrinos in the direction