ترغب بنشر مسار تعليمي؟ اضغط هنا

A quantized statistical model of flow stress and generalized Hall-Petch law for deformable polycrystalline materials. A temperature-dimension effect

98   0   0.0 ( 0 )
 نشر من قبل Alexander Reshetnyak
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A theory of flow stress (FS), reviewing and developing our research,e.g. arxiv:1803.08247;1908.09338, is proposed,including yield strength (YS) of PC materials for quasi-static plastic loading for grain of average size d in range 10^{-8}-10^{-2}m. Its based on statistical model of energy spectrum distribution in each grain of 1-mode PC sample under plastic loading,with highest level equal to maximal dislocation energy. Found distribution of scalar dislocation density leads to FS due to Taylor strain hardening containing usual and anomalous HP laws for coarse and NC grains, respectively, and reaches maximum for extreme grain size d_0 of order 10^{-8}m. Maximum undergoes shift to region of larger grains for decreasing T and increasing strains. Coincidence is established among theoretical and experimental data on YS for BCC(alpha-Fe), FCC(Cu,Al,Ni),HCP(alpha-Ti,Zr) PC materials at T=300K.The T-dependence of strength quantities is studied. It is shown using Al that YS grows with decrease in T for all grains with d>3d_0,and then YS decreases in NC region,thus determining a temperature-dimension effect (TDE).1-phase model of PC sample is extended by including softening GB phase into 2-phase model,and then by dispersion (un)hardening. A quasi-particle interpretation of crystallite energy quantization is suggested.Analytic and graphic forms of HP laws are obtained in above samples with different values of small-,large-angle GB and constant pores.The maximum of YS and respective extremal grain size of the samples are shifted by change of 2-nd phase.The T-dependence of YS in range of 150-350K for Al demonstrates the validity of TDE. An enlargement of 2-nd phase neutralizes TDE.Deformation curves for 1- and 2-mode 2-phase alpha-Fe PC model are constructed with Backofen-Considere fracture criterion,as compared to experimental,1-phase model data, and strongly depend on multimodality and GB



قيم البحث

اقرأ أيضاً

In the framework of the suggested in [arxiv:1803.08247 [cond-mat.mtrl-sci]] statistical theory of the equilibrium flow stress, including yield strength, ${sigma}_y$, of polycrystalline materials under quasi-static (in case of tensile strain) plastic deformation in dependence on average size, d, of the crystallites (grains) in the range, $10^{-8}$ m - $10^{-2}$ m. it is found the coincidences of the theoretical and experimental data of ${sigma}_y$ for the materials with BCC (${alpha}$- Fe), FCC (Cu, Al, Ni) and HCP (${alpha}$-Ti, Zr) crystal lattice at T=300K. The temperature dependence of the strength characteristics is studied. It is shown on the example of Al, that the yield strength grows with decreasing of the temperature for all grains with d greater than $3*d_0$ (with $d_0$ being extremal size of the grain for maximal ${sigma}_y$) and then ${sigma}_y$ decreases in the nano-crystalline region, thus determining a temperature-dimension effect. Stress-strain curves, ${sigma}={sigma}({epsilon})$, are constructed for the pure crystalline phase of ${alpha}$-Fe with Backofen-Considere fracture criterion validity. The single-phase model of polycrystalline material is augmented by means of inclusion of a softening grain boundary phase.
Exploration of the novel relationship between magnetic order and topological semimetals has received enormous interest in a wide range of both fundamental and applied research. Here we predict that soft ferromagnetic (FM) material EuB6 can achieve mu ltiple topological semimetal phases by simply tuning the direction of the magnetic moment. Explicitly, EuB6 is a topological nodal-line semimetal when the moment is aligned along the [001] direction, and it evolves into a Weyl semimetal with three pairs of Weyl nodes by rotating the moment to the [111] direction. Interestingly, we identify a novel semimetal phase featuring the coexistence of a nodal line and Weyl nodes with the moment in the [110] direction. Topological surface states and anomalous Hall conductivity, which is sensitive to the magnetic order, have been computed and are expected to be experimentally observable. Large-Chern-number quantum anomalous Hall effect can be realized in its [111]-oriented quantum-well structure.
We report the observation of a quantum anomalous Hall effect in twisted bilayer graphene showing Hall resistance quantized to within .1% of the von Klitzing constant $h/e^2$ at zero magnetic field.The effect is driven by intrinsic strong correlations , which polarize the electron system into a single spin and valley resolved moire miniband with Chern number $C=1$. In contrast to extrinsic, magnetically doped systems, the measured transport energy gap $Delta/k_Bapprox 27$~K is larger than the Curie temperature for magnetic ordering $T_Capprox 9$~K, and Hall quantization persists to temperatures of several Kelvin. Remarkably, we find that electrical currents as small as 1~nA can be used to controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.
We elaborate the recently introduced theory of flow stress, including yield strength, in polycrystalline materials under quasi-static plastic deformations, thereby extending the case of single-mode aggregates to multimodal ones in the framework of a two-phase model which is characterized by the presence of crystalline and grain-boundary phases. Both analytic and graphic forms of the generalized Hall-Petch relations are obtained for multimodal samples with BCC ($alpha$-phase Fe), FCC (Cu, Al, Ni) and HCP (Cu, Al, Ni) and HCP ($alpha$-Ti, Zr) crystalline lattices at $T=300K$ with different values of the grain-boundary (second) phase. The case of dispersion hardening due to a natural incorporation into the model of a third phase including additional particles of doping materials is considered. The maximum of yield strength and the respective extremal grain size of samples are shifted by changing both the input from different grain modes and the values at the second and third phases. We study the influence of multimodality and dispersion hardening on the temperature-dimensional effect for yield strength within the range of $150-350K$.
Non-volatile memory and computing technology rely on efficient read and write of ultra-tiny information carriers that do not wear out. Magnetic skyrmions are emerging as a potential carrier since they are topologically robust nanoscale spin textures that can be manipulated with ultralow current density. To date, most of skyrmions are reported in metallic films, which suffer from additional Ohmic loss and thus high energy dissipation. Therefore, skyrmions in magnetic insulators are of technological importance for low-power information processing applications due to their low damping and the absence of Ohmic loss. Moreover, they attract fundamental interest in studying various magnon-skyrmion interactions11. Skyrmions have been observed in one insulating material Cu2OSeO3 at cryogenic temperatures, where they are stabilized by bulk Dzyaloshinskii-Moriya interaction. Here, we report the observation of magnetic skyrmions that survive above room temperature in magnetic insulator/heavy metal heterostructures, i.e., thulium iron garnet/platinum. The presence of these skyrmions results from the Dzyaloshinskii-Moriya interaction at the interface and is identified by the emergent topological Hall effect. Through tuning the magnetic anisotropy via varying temperature, we observe skyrmions in a large window of external magnetic field and enhanced stability of skyrmions in the easy-plane anisotropy regime. Our results will help create a new platform for insulating skyrmion-based room temperature low dissipation spintronic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا