This paper establishes results on the existence and uniqueness of solutions to McKean-Vlasov equations, also called mean-field stochastic differential equations, in an infinite-dimensional Hilbert space setting with irregular drift. Here, McKean-Vlasov equations with additive noise are considered where the driving noise is cylindrical (fractional) Brownian motion. The existence and uniqueness of weak solutions are established for drift coefficients that are merely measurable, bounded, and continuous in the law variable. In particular, the drift coefficient is allowed to be singular in the spatial variable. Further, we discuss existence of a pathwisely unique strong solution as well as Malliavin differentiability.