ﻻ يوجد ملخص باللغة العربية
We study the stability of a family of spherical equilibrium models of self-gravitating systems, the so-called $gamma-$models with Osipkov-Merritt velocity anisotropy, by means of $N-$body simulations. In particular, we analyze the effect of self-consistent $N-$body chaos on the onset of radial-orbit instability (ROI). We find that degree of chaoticity of the system associated to its largest Lyapunov exponent $Lambda_{rm max}$ has no appreciable relation with the stability of the model for fixed density profile and different values of radial velocity anisotropy. However, by studying the distribution of the Lyapunov exponents $lambda_{rm m}$ of the individual particles in the single-particle phase space, we find that more anisotropic systems have a larger fraction of orbits with larger $lambda_{rm m}$.
We revisit the r^{o}le of discreteness and chaos in the dynamics of self-gravitating systems by means of $N$-body simulations with active and frozen potentials, starting from spherically symmetric stationary states and considering the orbits of singl
We study chaos and Levy flights in the general gravitational three-body problem. We introduce new metrics to characterize the time evolution and final lifetime distributions, namely Scramble Density $mathcal{S}$ and the LF index $mathcal{L}$, that ar
We derive a semi-analytic criterion for the presence of chaos in compact, eccentric multiplanet systems. Beyond a minimum semimajor-axis separation, below which the dynamics are chaotic at all eccentricities, we show that (i) the onset of chaos is de
We review the occurrence of the patterns of the onset of chaos in low-dimensional nonlinear dissipative systems in leading topics of condensed matter physics and complex systems of various disciplines. We consider the dynamics associated with the att
Using direct $N$-body simulations of self-gravitating systems we study the dependence of dynamical chaos on the system size $N$. We find that the $N$-body chaos quantified in terms of the largest Lyapunov exponent $Lambda_{rm max}$ decreases with $N$