ﻻ يوجد ملخص باللغة العربية
We present concluding results from our study for zero-temperature phase structure of the massive Thirring model in 1+1 dimensions with staggered regularisation. Employing the method of matrix product states, several quantities, including two types of correlators, are investigated, leading to numerical evidence of a Berezinskii-Kosterlitz-Thouless phase transition. Exploratory results for real-time dynamics pertaining to this transition, obtained using the approaches of variational uniform matrix product state and time-dependent variational principle, are also discussed.
We numerically study the phase structure of the CP(1) model in the presence of a topological $theta$-term, a regime afflicted by the sign problem for conventional lattice Monte Carlo simulations. Using a bond-weighted Tensor Renormalization Group met
We study the out-of-equilibrium properties of $1+1$ dimensional quantum electrodynamics (QED), discretized via the staggered-fermion Schwinger model with an Abelian $mathbb{Z}_{n}$ gauge group. We look at two relevant phenomena: first, we analyze the
Direct numerical evaluation of the real-time path integral has a well-known sign problem that makes convergence exponentially slow. One promising remedy is to use Picard-Lefschetz theory to flow the domain of the field variables into the complex plan
The method of optimized perturbation theory (OPT) is used to study the phase diagram of the massless Gross-Neveu model in 2+1 dimensions. In the temperature and chemical potential plane, our results give strong support to the existence of a tricritic
We construct a tensor network representation of the partition function for the massless Schwinger model on a two dimensional lattice using staggered fermions. The tensor network representation allows us to include a topological term. Using a particul