ﻻ يوجد ملخص باللغة العربية
The exactly-solvable Sachdev-Ye-Kitaev (SYK) model has recently received considerable attention in both condensed matter and high energy physics because it describes quantum matter without quasiparticles, while being at the same time the holographic dual of a quantum black hole. In this Letter, we examine SYK-based charging protocols of quantum batteries with N quantum cells. Extensive numerical calculations based on exact diagonalization for N up to 16 strongly suggest that the optimal charging power of our SYK quantum batteries displays a super-extensive scaling with N that stems from genuine quantum mechanical effects. While the complexity of the nonequilibrium SYK problem involved in the charging dynamics prevents us from an analytical proof, we believe that this Letter offers the first (to the best of our knowledge) strong numerical evidence of a quantum advantage occurring due to the maximally-entangling underlying quantum dynamics.
The random matrix theory (RMT) can be used to classify both topological phases of matter and quantum chaos. We develop a systematic and transformative RMT to classify the quantum chaos in the colored Sachdev-Ye-Kitaev (SYK) model first introduced by
Periodically driven quantum matter can realize exotic dynamical phases. In order to understand how ubiquitous and robust these phases are, it is pertinent to investigate the heating dynamics of generic interacting quantum systems. Here we study the t
We study the original Sachdev-Ye (SY) model in its Majorana fermion representation which can be called the two indices Sachdev-Ye-Kitaev (SYK) model. Its advantage over the original SY model in the $ SU(M) $ complex fermion representation is that it
Supersymmetry is a powerful concept in quantum many-body physics. It helps to illuminate ground state properties of complex quantum systems and gives relations between correlation functions. In this work, we show that the Sachdev-Ye-Kitaev model, in
Given a class of $q$-local Hamiltonians, is it possible to find a simple variational state whose energy is a finite fraction of the ground state energy in the thermodynamic limit? Whereas product states often provide an affirmative answer in the case