Thermodynamic properties of strongly interacting matter are investigated using the Polyakov loop enhanced Nambu$-$Jona-Lasinio model along with some modifications to include the hadrons. Various observables are shown to have a close agreement with the numerical data of QCD on lattice. The advantage of the present scheme over a similar study using a switching function is that here no extra parameters are to be fitted. As a result the present scheme can be easily extended for finite chemical potentials.
We derive the next-to-leading order correction to the Nambu-Jona-Lasinio model starting from quantum chromodynamics. So, we are able to fix the constants of the Nambu-Jona-Lasinio model from quantum chromodynamics and analyze the behavior of strong i
nteractions at low energies. The technique is to expand in powers of currents the generating functional. We apply it to a simple Yukawa model with self-interaction showing how this has a Nambu-Jona-Lasinio model and its higher order corrections as a low-energy limit. The same is shown to happen for quantum chromodynamics in the chiral limit with two quarks. We prove that a consistent thermodynamic behaviour is obtained as expected for the given parameters.
We present the thermodynamic properties of strongly interacting matter in finite volume in the framework of Polyakov loop enhanced Nambu$-$Jona-lasinio model within mean field approximation. We considered both the 2 flavor and 2+1 flavor matter. Our
primary observation was a qualitative change in the phase transition properties that resulted in the lowering of the temperature corresponding to the critical end point. This would make it favorable for detection in heavy-ion experiments that intend to create high density matter with considerably small temperatures. We further demonstrate the possibility of obtaining chiral symmetry restoration even within the confined phase in finite volumes.
We investigate the phase diagram of the so-called Polyakov--Nambu--Jona-Lasinio model at finite temperature and nonzero chemical potential with three quark flavours. Chiral and deconfinement phase transitions are discussed, and the relevant order-lik
e parameters are analyzed. The results are compared with simple thermodynamic expectations and lattice data. A special attention is payed to the critical end point: as the strength of the flavour-mixing interaction becomes weaker, the critical end point moves to low temperatures and can even disappear.
We estimate the axion properties i.e. its mass, topological susceptibility and the self-coupling within the framework of Polyakov loop enhanced Nambu-Jona-Lasinio (PNJL) model at finite temperature and quark chemical potential. PNJL model, where quar
ks couple simultaneously to the chiral condensate and to a background temporal quantum chromodynamics (QCD) gauge field, includes two important features of QCD phase transition, i.e. deconfinement and chiral symmetry restoration. The Polyakov loop in PNJL model plays an important role near the critical temperature. We have shown significant difference in the axion properties calculated in PNJL model compared to the same obtained using Nambu-Jona-Lasinio (NJL) model. We find that both the mass of the axion and its self-coupling are correlated with the chiral transition as well as the confinement-deconfinement transition. We have also estimated the axion properties at finite chemical potential. Across the QCD transition temperature and/or quark chemical potential axion mass and its self-coupling also changes significantly. Since the PNJL model includes both the fermionic sector and the gauge fields, it can give reliable estimates of the axion properties, i.e. its mass and the self-coupling in a hot and dense QCD medium. We also compare our results with the lattice QCD results whenever available.
We revisit the Polyakov Loop coupled Nambu-Jona-Lasinio model that maintains the Polyakov loop dynamics in the limit of zero temperature. This is of interest for astrophysical applications in the interior of neutron stars. For this purpose we re-exam
ine the form of the potential for the deconfinement order parameter at finite baryonic densities. Since the modification of this potential at any temperature is formally equivalent to assigning a baryonic charge to gluons, we develop a more general formulation of the present model that cures this spurious effect and is normalized to match the asymptotic behaviour of the QCD equation of state given by $mathcal{O}(alpha_s^2)$ and partial $mathcal{O}(alpha_s^3ln^2alpha_s)$ perturbative results.
Abhijit Bhattacharyya
,Paramita Deb
,Sanjay K. Ghosh
.
(2019)
.
"Finite temperature properties of a modified Polyakov$-$Nambu$-$Jona-Lasinio model"
.
Sudipa Upadhaya
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا