Boundary blow-up analysis of gradient estimates for Lam{e} systems in the presence of $M$-convex hard inclusions


الملخص بالإنكليزية

In high-contrast elastic composites, it is vitally important to investigate the stress concentration from an engineering point of view. The purpose of this paper is to show that the blowup rate of the stress depends not only on the shape of the inclusions, but also on the given boundary data, when hard inclusions are close to matrix boundary. First, when the boundary of inclusion is partially relatively parallel to that of matrix, we establish the gradient estimates for Lam{e} systems with partially infinite coefficients and find that they are bounded for some boundary data $varphi$ while some $varphi$ will increase the blow-up rate. In order to identify such novel blowup phenomenon, we further consider the general $m$-convex inclusion cases and uncover the dependence of blow-up rate on the inclusions convexity $m$ and the boundary datas order of growth $k$ in all dimensions. In particular, the sharpness of these blow-up rates is also presented for some prescribed boundary data.

تحميل البحث