ﻻ يوجد ملخص باللغة العربية
With the increasing growth of social media, people have started relying heavily on the information shared therein to form opinions and make decisions. While such a reliance is motivation for a variety of parties to promote information, it also makes people vulnerable to exploitation by slander, misinformation, terroristic and predatorial advances. In this work, we aim to understand and detect such attempts at persuasion. Existing works on detecting persuasion in text make use of lexical features for detecting persuasive tactics, without taking advantage of the possible structures inherent in the tactics used. We formulate the task as a multi-class classification problem and propose an unsupervised, domain-independent machine learning framework for detecting the type of persuasion used in text, which exploits the inherent sentence structure present in the different persuasion tactics. Our work shows promising results as compared to existing work.
Despite the recent advancement in NLP research, cross-lingual transfer for natural language generation is relatively understudied. In this work, we transfer supervision from high resource language (HRL) to multiple low-resource languages (LRLs) for n
Style transfer deals with the algorithms to transfer the stylistic properties of a piece of text into that of another while ensuring that the core content is preserved. There has been a lot of interest in the field of text style transfer due to its w
Deep learning-based scene text detection can achieve preferable performance, powered with sufficient labeled training data. However, manual labeling is time consuming and laborious. At the extreme, the corresponding annotated data are unavailable. Ex
Neural entity linking models are very powerful, but run the risk of overfitting to the domain they are trained in. For this problem, a domain is characterized not just by genre of text but even by factors as specific as the particular distribution of
We review the task of Sentence Pair Scoring, popular in the literature in various forms - viewed as Answer Sentence Selection, Semantic Text Scoring, Next Utterance Ranking, Recognizing Textual Entailment, Paraphrasing or e.g. a component of Memory N