ترغب بنشر مسار تعليمي؟ اضغط هنا

Dota 2 with Large Scale Deep Reinforcement Learning

74   0   0.0 ( 0 )
 نشر من قبل Filip Wolski
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

On April 13th, 2019, OpenAI Five became the first AI system to defeat the world champions at an esports game. The game of Dota 2 presents novel challenges for AI systems such as long time horizons, imperfect information, and complex, continuous state-action spaces, all challenges which will become increasingly central to more capable AI systems. OpenAI Five leveraged existing reinforcement learning techniques, scaled to learn from batches of approximately 2 million frames every 2 seconds. We developed a distributed training system and tools for continual training which allowed us to train OpenAI Five for 10 months. By defeating the Dota 2 world champion (Team OG), OpenAI Five demonstrates that self-play reinforcement learning can achieve superhuman performance on a difficult task.



قيم البحث

اقرأ أيضاً

108 - Yusen Huo , Qinghua Tao , 2019
Traffic signal control has long been considered as a critical topic in intelligent transportation systems. Most existing learning methods mainly focus on isolated intersections and suffer from inefficient training. This paper aims at the cooperative control for large scale multi-intersection traffic signal, in which a novel end-to-end learning based model is established and the efficient training method is proposed correspondingly. In the proposed model, the input traffic status in multi-intersections is represented by a tensor, which not only significantly reduces dimensionality than using a single matrix but also avoids information loss. For the output, a multidimensional boolean vector is employed for the control policy to indicate whether the signal state changes or not, which simplifies the representation and abides the practical phase changing rules. In the proposed model, a multi-task learning structure is used to get the cooperative policy by learning. Instead of only using the reinforcement learning to train the model, we employ imitation learning to integrate a rule based model with neural networks to do the pre-training, which provides a reliable and satisfactory stage solution and greatly accelerates the convergence. Afterwards, the reinforcement learning method is adopted to continue the fine training, where proximal policy optimization algorithm is incorporated to solve the policy collapse problem in multi-dimensional output situation. In numerical experiments, the advantages of the proposed model are demonstrated with comparison to the related state-of-the-art methods.
The reinforcement learning community has made great strides in designing algorithms capable of exceeding human performance on specific tasks. These algorithms are mostly trained one task at the time, each new task requiring to train a brand new agent instance. This means the learning algorithm is general, but each solution is not; each agent can only solve the one task it was trained on. In this work, we study the problem of learning to master not one but multiple sequential-decision tasks at once. A general issue in multi-task learning is that a balance must be found between the needs of multiple tasks competing for the limited resources of a single learning system. Many learning algorithms can get distracted by certain tasks in the set of tasks to solve. Such tasks appear more salient to the learning process, for instance because of the density or magnitude of the in-task rewards. This causes the algorithm to focus on those salient tasks at the expense of generality. We propose to automatically adapt the contribution of each task to the agents updates, so that all tasks have a similar impact on the learning dynamics. This resulted in state of the art performance on learning to play all games in a set of 57 diverse Atari games. Excitingly, our method learned a single trained policy - with a single set of weights - that exceeds median human performance. To our knowledge, this was the first time a single agent surpassed human-level performance on this multi-task domain. The same approach also demonstrated state of the art performance on a set of 30 tasks in the 3D reinforcement learning platform DeepMind Lab.
Machine Learning (ML) is increasingly being used for computer aided diagnosis of brain related disorders based on structural magnetic resonance imaging (MRI) data. Most of such work employs biologically and medically meaningful hand-crafted features calculated from different regions of the brain. The construction of such highly specialized features requires a considerable amount of time, manual oversight and careful quality control to ensure the absence of errors in the computational process. Recent advances in Deep Representation Learning have shown great promise in extracting highly non-linear and information-rich features from data. In this paper, we present a novel large-scale deep unsupervised approach to learn generic feature representations of structural brain MRI scans, which requires no specialized domain knowledge or manual intervention. Our method produces low-dimensional representations of brain structure, which can be used to reconstruct brain images with very low error and exhibit performance comparable to FreeSurfer features on various classification tasks.
A* is a popular path-finding algorithm, but it can only be applied to those domains where a good heuristic function is known. Inspired by recent methods combining Deep Neural Networks (DNNs) and trees, this study demonstrates how to train a heuristic represented by a DNN and combine it with A*. This new algorithm which we call aleph-star can be used efficiently in domains where the input to the heuristic could be processed by a neural network. We compare aleph-star to N-Step Deep Q-Learning (DQN Mnih et al. 2013) in a driving simulation with pixel-based input, and demonstrate significantly better performance in this scenario.
In recent years, on-policy reinforcement learning (RL) has been successfully applied to many different continuous control tasks. While RL algorithms are often conceptually simple, their state-of-the-art implementations take numerous low- and high-lev el design decisions that strongly affect the performance of the resulting agents. Those choices are usually not extensively discussed in the literature, leading to discrepancy between published descriptions of algorithms and their implementations. This makes it hard to attribute progress in RL and slows down overall progress [Engstrom20]. As a step towards filling that gap, we implement >50 such ``choices in a unified on-policy RL framework, allowing us to investigate their impact in a large-scale empirical study. We train over 250000 agents in five continuous control environments of different complexity and provide insights and practical recommendations for on-policy training of RL agents.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا