Superconductivity in the doped quantum spin liquid on the triangular lattice


الملخص بالإنكليزية

Broad interest in quantum spin liquid (QSL) phases was triggered by the notion that they can be viewed as insulating phases with preexisting electron-pairs, such that upon light doping they might automatically yield superconductivity. Yet despite intense efforts, definitive evidence is lacking. We address the problem of a lightly doped QSL through a large-scale density-matrix renormalization group study of the $t$-$J$ model on the triangular lattice with a small but non-zero concentration of doped holes. The ground state is consistent with a Luther-Emery liquid with power-law superconducting and charge-density-wave correlations associated with partially-filled charge stripes. In particular, the superconducting correlations are dominant on both four-leg and six-leg cylinders at all hole doping concentrations. Our results provide direct evidences that doping a QSL can naturally lead to robust superconductivity.

تحميل البحث