ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in the doped quantum spin liquid on the triangular lattice

117   0   0.0 ( 0 )
 نشر من قبل Hong-Chen Jiang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hong-Chen Jiang




اسأل ChatGPT حول البحث

Broad interest in quantum spin liquid (QSL) phases was triggered by the notion that they can be viewed as insulating phases with preexisting electron-pairs, such that upon light doping they might automatically yield superconductivity. Yet despite intense efforts, definitive evidence is lacking. We address the problem of a lightly doped QSL through a large-scale density-matrix renormalization group study of the $t$-$J$ model on the triangular lattice with a small but non-zero concentration of doped holes. The ground state is consistent with a Luther-Emery liquid with power-law superconducting and charge-density-wave correlations associated with partially-filled charge stripes. In particular, the superconducting correlations are dominant on both four-leg and six-leg cylinders at all hole doping concentrations. Our results provide direct evidences that doping a QSL can naturally lead to robust superconductivity.



قيم البحث

اقرأ أيضاً

It has long been proposed that doping a chiral spin liquid (CSL) or fractional quantum Hall state can give rise to topological superconductivity. Despite of intensive effort, definitive evidences still remain lacking. We address this problem by study ing the $t$-$J$ model supplemented by time-reversal symmetry breaking chiral interaction $J_chi$ on the triangular lattice using density-matrix renormalization group with a finite concentration $delta$ of doped holes. It has been established that the undoped, i.e., $delta$=0, system has a CSL ground state in the parameter region $0.32le J_chi/J le 0.56$. Upon light doping, we find that the ground state of the system is consistent with a Luther-Emery liquid with power-law superconducting and charge-density-wave correlations but short-range spin-spin correlations. In particular, the superconducting correlations, whose pairing symmetry is consistent with $dpm id$-wave, are dominant at all hole doping concentrations. Our results provide direct evidences that doping the CSL on the triangular lattice can naturally give rise to topological superconductivity.
A quantum spin liquid (QSL) is an exotic state of matter in which electrons spins are quantum entangled over long distances, but do not show symmetry-breaking magnetic order in the zero-temperature limit. The observation of QSL states is a central ai m of experimental physics, because they host collective excitations that transcend our knowledge of quantum matter; however, examples in real materials are scarce. Here, we report neutron-scattering measurements on YbMgGaO4, a QSL candidate in which Yb3+ ions with effective spin-1/2 occupy a triangular lattice. Our measurements reveal a continuum of magnetic excitations - the essential experimental hallmark of a QSL - at very low temperature (0.06 K). The origin of this peculiar excitation spectrum is a crucial question, because isotropic nearest-neighbor interactions do not yield a QSL ground state on the triangular lattice. Using measurements of the magnetic excitations close to the field-polarized state, we identify antiferromagnetic next-nearest-neighbor interactions in the presence of planar anisotropy as key ingredients for QSL formation in YbMgGaO4.
Rare-earth delafossites were recently proposed as promising candidates for the realization of an effective $S$=1/2 quantum spin liquid (QSL) on the triangular lattice. In contrast to the most actively studied triangular-lattice antiferromagnet YbMgGa O$_4$, which is known for considerable structural disorder due to site intermixing, NaYbS$_2$ delafossite realizes structurally ideal triangular layers. We present detailed $mu$SR studies on this regular (undistorted) triangular Yb sublattice based system with effective spin $J_{mathrm{eff}}=1/2$ in the temperature range 0.05 - 40 K. Zero-field (ZF) and longitudinal field (LF) $mu$SR studies confirm the absence of any long range magnetic order state down to 0.05K ($sim J$/80). Current $mu$SR results together with the so far available bulk characterization data suggest that NaYbS$_2$ is an ideal candidate to identify QSL ground state.
The interplay between spin frustration and charge fluctuation gives rise to an exotic quantum state in the intermediate-interaction regime of the half-filled triangular-lattice Hubbard (TLU) model, while the nature of the state is under debate. Using the density matrix renormalization group with SU(2)$_{rm{spin}} otimes $U(1)$_{rm{charge}}$ symmetries implemented, we study the TLU model defined on the long cylinder geometry with circumference $W=4$. A gapped quantum spin liquid, with on-site interaction $9 lesssim U / t lesssim 10.75$, is identified between the metallic and the antiferromagnetic Mott insulating phases. In particular, we find that this spin liquid develops a robust long-range spin scalar-chiral correlation as the system length $L$ increases, which unambiguously unveils the spontaneous time-reversal symmetry breaking. In addition, the large degeneracy of the entanglement spectrum supports symmetry fractionalization and spinon edge modes in the obtained ground state. The possible origin of chiral order in this intermediate spin liquid and its relation to the rotonlike excitations have also been discussed.
We have performed density-matrix renormalization group studies of a square lattice $t$-$J$ model with small hole doping, $deltall 1$, on long 4 and 6 leg cylinders. We include frustration in the form of a second-neighbor exchange coupling, $J_2 = J_1 /2$, such that the undoped ($delta=0$) parent state is a quantum spin liquid. In contrast to the relatively short range superconducting (SC) correlations that have been observed in recent studies of the 6-leg cylinder in the absence of frustration, we find power law SC correlations with a Luttinger exponent, $K_{sc} approx 1$, consistent with a strongly diverging SC susceptibility, $chi sim T^{-(2-K_{sc})}$ as the temperature $Tto 0$. The spin-spin correlations - as in the undoped state - fall exponentially suggesting that the SC pairing correlations evolve smoothly from the insulating parent state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا