ﻻ يوجد ملخص باللغة العربية
Particle picking is currently a critical step in the cryo-EM single particle reconstruction pipeline. Despite extensive work on this problem, for many data sets it is still challenging, especially for low SNR micrographs. We present the KLT (Karhunen Loeve Transform) picker, which is fully automatic and requires as an input only the approximated particle size. In particular, it does not require any manual picking. Our method is designed especially to handle low SNR micrographs. It is based on learning a set of optimal templates through the use of multi-variate statistical analysis via the Karhunen Loeve Transform. We evaluate the KLT picker on publicly available data sets and present high-quality results with minimal manual effort.
Muons are the most abundant charged particles arriving at sea level originating from the decay of secondary charged pions and kaons. These secondary particles are created when high-energy cosmic rays hit the atmosphere interacting with air nuclei ini
In this paper, we consider a surrogate modeling approach using a data-driven nonparametric likelihood function constructed on a manifold on which the data lie (or to which they are close). The proposed method represents the likelihood function using
The in situ measurement of the particle size distribution (PSD) of a suspension of particles presents huge challenges. Various effects from the process could introduce noise to the data from which the PSD is estimated. This in turn could lead to the
Modern scientific computational methods are undergoing a transformative change; big data and statistical learning methods now have the potential to outperform the classical first-principles modeling paradigm. This book bridges this transition, connec
A data-driven convergence criterion for the DAgostini (Richardson-Lucy) iterative unfolding is presented. It relies on the unregularized spectrum (infinite number of iterations), and allows a safe estimation of the bias and undercoverage induced by t