ﻻ يوجد ملخص باللغة العربية
Deep convolutional neural networks can be highly vulnerable to small perturbations of their inputs, potentially a major issue or limitation on system robustness when using deep networks as classifiers. In this paper we propose a low-cost method to explore marginal sample data near trained classifier decision boundaries, thus identifying potential adversarial samples. By finding such adversarial samples it is possible to reduce the search space of adversarial attack algorithms while keeping a reasonable successful perturbation rate. In our developed strategy, the potential adversarial samples represent only 61% of the test data, but in fact cover more than 82% of the adversarial samples produced by iFGSM and 92% of the adversarial samples successfully perturbed by DeepFool on CIFAR10.
Deep neural networks (DNNs) are playing key roles in various artificial intelligence applications such as image classification and object recognition. However, a growing number of studies have shown that there exist adversarial examples in DNNs, whic
Transfer learning has become a common practice for training deep learning models with limited labeled data in a target domain. On the other hand, deep models are vulnerable to adversarial attacks. Though transfer learning has been widely applied, its
In general, adversarial perturbations superimposed on inputs are realistic threats for a deep neural network (DNN). In this paper, we propose a practical generation method of such adversarial perturbation to be applied to black-box attacks that deman
Deep neural networks (DNNs) are known for their vulnerability to adversarial examples. These are examples that have undergone small, carefully crafted perturbations, and which can easily fool a DNN into making misclassifications at test time. Thus fa
Recent work has highlighted the vulnerability of many deep machine learning models to adversarial examples. It attracts increasing attention to adversarial attacks, which can be used to evaluate the security and robustness of models before they are d