ﻻ يوجد ملخص باللغة العربية
Traditional video compression technologies have been developed over decades in pursuit of higher coding efficiency. Efficient temporal information representation plays a key role in video coding. Thus, in this paper, we propose to exploit the temporal correlation using both first-order optical flow and second-order flow prediction. We suggest an one-stage learning approach to encapsulate flow as quantized features from consecutive frames which is then entropy coded with adaptive contexts conditioned on joint spatial-temporal priors to exploit second-order correlations. Joint priors are embedded in autoregressive spatial neighbors, co-located hyper elements and temporal neighbors using ConvLSTM recurrently. We evaluate our approach for the low-delay scenario with High-Efficiency Video Coding (H.265/HEVC), H.264/AVC and another learned video compression method, following the common test settings. Our work offers the state-of-the-art performance, with consistent gains across all popular test sequences.
In this paper, we propose a learned video codec with a residual prediction network (RP-Net) and a feature-aided loop filter (LF-Net). For the RP-Net, we exploit the residual of previous multiple frames to further eliminate the redundancy of the curre
We present a new algorithm for video coding, learned end-to-end for the low-latency mode. In this setting, our approach outperforms all existing video codecs across nearly the entire bitrate range. To our knowledge, this is the first ML-based method
In this paper, we present a novel adversarial lossy video compression model. At extremely low bit-rates, standard video coding schemes suffer from unpleasant reconstruction artifacts such as blocking, ringing etc. Existing learned neural approaches t
This paper proposes a Perceptual Learned Video Compression (PLVC) approach with recurrent conditional generative adversarial network. In our approach, the recurrent auto-encoder-based generator learns to fully explore the temporal correlation for com
We propose an end-to-end learned video compression scheme for low-latency scenarios. Previous methods are limited in using the previous one frame as reference. Our method introduces the usage of the previous multiple frames as references. In our sche