ﻻ يوجد ملخص باللغة العربية
This work discusses the application of an affine reconstructed nodal DG method for unstructured grids of triangles. Solving the diffusion terms in the DG method is non-trivial due to the solution representations being piecewise continuous. Hence, the diffusive flux is not defined on the interface of elements. The proposed numerical approach reconstructs a smooth solution in a parallelogram that is enclosed by the quadrilateral formed by two adjacent triangle elements. The interface between these two triangles is the diagonal of the enclosed parallelogram. Similar to triangles, the mapping of parallelograms from a physical domain to a reference domain is an affine mapping, which is necessary for an accurate and efficient implementation of the numerical algorithm. Thus, all computations can still be performed on the reference domain, which promotes efficiency in computation and storage. This reconstruction does not make assumptions on choice of polynomial basis. Reconstructed DG algorithms have previously been developed for modal implementations of the convection-diffusion equations. However, to the best of the authors knowledge, this is the first practical guideline that has been proposed for applying the reconstructed algorithm on a nodal discontinuous Galerkin method with a focus on accuracy and efficiency. The algorithm is demonstrated on a number of benchmark cases as well as a challenging substantive problem in HED hydrodynamics with highly disparate diffusion parameters.
Two methods for solid body representation in flow simulations available in the Pencil Code are the immersed boundary method and overset grids. These methods are quite different in terms of computational cost, flexibility and numerical accuracy. We pr
The mass flow rate of Poiseuille flow of rarefied gas through long ducts of two-dimensional cross-sections with arbitrary shape are critical in the pore-network modeling of gas transport in porous media. In this paper, for the first time, the high-or
In the spirit of making high-order discontinuous Galerkin (DG) methods more competitive, researchers have developed the hybridized DG methods, a class of discontinuous Galerkin methods that generalizes the Hybridizable DG (HDG), the Embedded DG (EDG)
A numerical approach for solving evolutionary partial differential equations in two and three space dimensions on block-based adaptive grids is presented. The numerical discretization is based on high-order, central finite-differences and explicit ti
Discontinuous Galerkin finite element schemes exhibit attractive features for accurate large-scale wave-propagation simulations on modern parallel architectures. For many applications, these schemes must be coupled with non-reflective boundary treatm