ﻻ يوجد ملخص باللغة العربية
Given an augmentation for a Legendrian surface in a $1$-jet space, $Lambda subset J^1(M)$, we explicitly construct an object, $mathcal{F} in Sh_{Lambda}$, of the (derived) category from arXiv:1402.0490 of constructible sheaves on $Mtimes R$ with singular support determined by $Lambda$. In the construction, we introduce a simplicial Legendrian DGA (differential graded algebra) for Legendrian submanifolds in $1$-jet spaces that, based on arXiv:1608.02984 and arXiv:1608.03011, is equivalent to the Legendrian contact homology DGA in the case of Legendrian surfaces. In addition, we extend the approach of arXiv:1402.0490 for $1$-dimensional Legendrian knots to obtain a combinatorial model for sheaves in $Sh_Lambda$ in the $2$-dimensional case.
The augmentation variety of a knot is the locus, in the 3-dimensional coefficient space of the knot contact homology dg-algebra, where the algebra admits a unital chain map to the complex numbers. We explain how to express the Alexander polynomial of
In this article, we prove a Legendrian Whitney trick which allows for the removal of intersections between codimension-two contact submanifolds and Legendrian submanifolds, assuming such a smooth cancellation is possible. This technique is applied to
Let $X$ be a Weinstein manifold with ideal contact boundary $Y$. If $Lambdasubset Y$ is a link of Legendrian spheres in $Y$ then by attaching Weinstein handles to $X$ along $Lambda$ we get a Weinstein cobordism $X_{Lambda}$ with a collection of Lagra
Sivek proves a van Kampen decomposition theorem for the combinatorial Legendrian contact algebra (also known as the Chekanov-Eliashberg algebra) of knots in standard contact $R^3$ . We prove an analogous result for the holomorphic curve version of th
The Thurston-Bennequin invariant provides one notion of self-linking for any homologically-trivial Legendrian curve in a contact three-manifold. Here we discuss related analytic notions of self-linking for Legendrian knots in Euclidean space. Our def