ﻻ يوجد ملخص باللغة العربية
Fast and robust quantum control protocols are often based on an idealised approximate description of the relevant quantum system. While this may provide a performance which is close to optimal, improvements can be made by incorporating elements of the full system representation. We propose a new technique for such scenarios, called enhanced shortcuts to adiabaticity (eSTA). The eSTA method works for previously intractable Hamiltonians by providing an analytical correction to existing STA protocols. This correction can be easily calculated and the resulting protocols are outside the class of STA schemes. We demonstrate the effectiveness of the method for three distinct cases: manipulation of an internal atomic state beyond the rotating wave approximation, transport of a neutral atom in an optical Gaussian trap and transport of two trapped ions in an anharmonic trap.
The quantum perceptron is a fundamental building block for quantum machine learning. This is a multidisciplinary field that incorporates abilities of quantum computing, such as state superposition and entanglement, to classical machine learning schem
High-fidelity quantum gates are essential for large-scale quantum computation. However, any quantum manipulation will inevitably affected by noises, systematic errors and decoherence effects, which lead to infidelity of a target quantum task. Therefo
Shortcuts to adiabaticity (STA) are a collection of quantum control techniques that achieve high fidelity outside of the adiabatic regime. Recently an extension to shortcuts to adiabaticity was proposed by the authors [Phys. Rev. Research 2, 023360 (
Adiabatic quantum control is a very important approach for quantum physics and quantum information processing. It holds the advantage with robustness to experimental imperfections but accumulates more decoherence due to the long evolution time. Here,
Different techniques to speed up quantum adiabatic processes are currently being explored for applications in atomic, molecular and optical physics, such as transport, cooling and expansions, wavepacket splitting, or internal state control. Here we e