ﻻ يوجد ملخص باللغة العربية
We present a brief review of our progress towards measuring parity violation in heavy-metal chiral complexes using mid-infrared Ramsey interferometry. We discuss our progress addressing the main challenges, including the development of buffer-gas sources of slow, cold polyatomic molecules, and the frequency-stabilisation of quantum cascade lasers calibrated using primary frequency standards. We report investigations on achiral test species of which promising chiral derivatives have been synthesized.
Parity violation (PV) effects in chiral molecules have so far never been experimentally observed. To take this challenge up, a consortium of physicists, chemists, theoreticians and spectroscopists has been established and aims at measuring PV energy
We present an experimental realization of a moving magnetic trap decelerator, where paramagnetic particles entrained in a cold supersonic beam are decelerated in a co-moving magnetic trap. Our method allows for an efficient slowing of both paramagnet
Originating from the weak interaction, parity violation in chiral molecules has been considered as a possible origin of the biohomochirality. It was predicted in 1974 but has never been observed so far. Parity violation should lead to a very tiny fre
This paper reviews the recent results in high-resolution spectroscopy on cold molecules. Laser spectroscopy of cold molecules addresses issues of symmetry violation, like in the search for the electric dipole moment of the electron and the studies on
Nuclear spin-dependent parity violation arises from weak interactions between electrons and nucleons, and from nuclear anapole moments. We outline a method to measure such effects, using a Stark-interference technique to determine the mixing between