ﻻ يوجد ملخص باللغة العربية
Recent results in nonparametric regression show that for deep learning, i.e., for neural network estimates with many hidden layers, we are able to achieve good rates of convergence even in case of high-dimensional predictor variables, provided suitable assumptions on the structure of the regression function are imposed. The estimates are defined by minimizing the empirical $L_2$ risk over a class of neural networks. In practice it is not clear how this can be done exactly. In this article we introduce a new neural network regression estimate where most of the weights are chosen regardless of the data motivated by some recent approximation results for neural networks, and which is therefore easy to implement. We show that for this estimate we can derive rates of convergence results in case the regression function is smooth. We combine this estimate with the projection pursuit, where we choose the directions randomly, and we show that for sufficiently many repititions we get a neural network regression estimate which is easy to implement and which achieves the one-dimensional rate of convergence (up to some logarithmic factor) in case that the regression function satisfies the assumptions of projection pursuit.
Nonparametric regression with random design is considered. Estimates are defined by minimzing a penalized empirical $L_2$ risk over a suitably chosen class of neural networks with one hidden layer via gradient descent. Here, the gradient descent proc
In this work, we investigate Gaussian process regression used to recover a function based on noisy observations. We derive upper and lower error bounds for Gaussian process regression with possibly misspecified correlation functions. The optimal conv
Kernel ridge regression is an important nonparametric method for estimating smooth functions. We introduce a new set of conditions, under which the actual rates of convergence of the kernel ridge regression estimator under both the L_2 norm and the n
We study the performance of the Least Squares Estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$-th moment ($pgeq 1$). In such a heavy-tailed regression setting, we s
We consider nonparametric estimation of the mean and covariance functions for functional/longitudinal data. Strong uniform convergence rates are developed for estimators that are local-linear smoothers. Our results are obtained in a unified framework