ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffraction tomography with a deep image prior

165   0   0.0 ( 0 )
 نشر من قبل Kevin Zhou
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a tomographic imaging technique, termed Deep Prior Diffraction Tomography (DP-DT), to reconstruct the 3D refractive index (RI) of thick biological samples at high resolution from a sequence of low-resolution images collected under angularly varying illumination. DP-DT processes the multi-angle data using a phase retrieval algorithm that is extended by a deep image prior (DIP), which reparameterizes the 3D sample reconstruction with an untrained, deep generative 3D convolutional neural network (CNN). We show that DP-DT effectively addresses the missing cone problem, which otherwise degrades the resolution and quality of standard 3D reconstruction algorithms. As DP-DT does not require pre-captured data or pre-training, it is not biased towards any particular dataset. Hence, it is a general technique that can be applied to a wide variety of 3D samples, including scenarios in which large datasets for supervised training would be infeasible or expensive. We applied DP-DT to obtain 3D RI maps of bead phantoms and complex biological specimens, both in simulation and experiment, and show that DP-DT produces higher-quality results than standard regularization techniques. We further demonstrate the generality of DP-DT, using two different scattering models, the first Born and multi-slice models. Our results point to the potential benefits of DP-DT for other 3D imaging modalities, including X-ray computed tomography, magnetic resonance imaging, and electron microscopy.



قيم البحث

اقرأ أيضاً

Deep neural networks are a very powerful tool for many computer vision tasks, including image restoration, exhibiting state-of-the-art results. However, the performance of deep learning methods tends to drop once the observation model used in trainin g mismatches the one in test time. In addition, most deep learning methods require vast amounts of training data, which are not accessible in many applications. To mitigate these disadvantages, we propose to combine two image restoration approaches: (i) Deep Image Prior (DIP), which trains a convolutional neural network (CNN) from scratch in test time using the given degraded image. It does not require any training data and builds on the implicit prior imposed by the CNN architecture; and (ii) a backprojection (BP) fidelity term, which is an alternative to the standard least squares loss that is usually used in previous DIP works. We demonstrate the performance of the proposed method, termed BP-DIP, on the deblurring task and show its advantages over the plain DIP, with both higher PSNR values and better inference run-time.
Robustness of deep learning methods for limited angle tomography is challenged by two major factors: a) due to insufficient training data the network may not generalize well to unseen data; b) deep learning methods are sensitive to noise. Thus, gener ating reconstructed images directly from a neural network appears inadequate. We propose to constrain the reconstructed images to be consistent with the measured projection data, while the unmeasured information is complemented by learning based methods. For this purpose, a data consistent artifact reduction (DCAR) method is introduced: First, a prior image is generated from an initial limited angle reconstruction via deep learning as a substitute for missing information. Afterwards, a conventional iterative reconstruction algorithm is applied, integrating the data consistency in the measured angular range and the prior information in the missing angular range. This ensures data integrity in the measured area, while inaccuracies incorporated by the deep learning prior lie only in areas where no information is acquired. The proposed DCAR method achieves significant image quality improvement: for 120-degree cone-beam limited angle tomography more than 10% RMSE reduction in noise-free case and more than 24% RMSE reduction in noisy case compared with a state-of-the-art U-Net based method.
Computed tomography (CT) has been widely used for medical diagnosis, assessment, and therapy planning and guidance. In reality, CT images may be affected adversely in the presence of metallic objects, which could lead to severe metal artifacts and in fluence clinical diagnosis or dose calculation in radiation therapy. In this paper, we propose a generalizable framework for metal artifact reduction (MAR) by simultaneously leveraging the advantages of image domain and sinogram domain-based MAR techniques. We formulate our framework as a sinogram completion problem and train a neural network (SinoNet) to restore the metal-affected projections. To improve the continuity of the completed projections at the boundary of metal trace and thus alleviate new artifacts in the reconstructed CT images, we train another neural network (PriorNet) to generate a good prior image to guide sinogram learning, and further design a novel residual sinogram learning strategy to effectively utilize the prior image information for better sinogram completion. The two networks are jointly trained in an end-to-end fashion with a differentiable forward projection (FP) operation so that the prior image generation and deep sinogram completion procedures can benefit from each other. Finally, the artifact-reduced CT images are reconstructed using the filtered backward projection (FBP) from the completed sinogram. Extensive experiments on simulated and real artifacts data demonstrate that our method produces superior artifact-reduced results while preserving the anatomical structures and outperforms other MAR methods.
114 - Ziwen Xu , Beiji Zou , Qing Liu 2020
Retinal image quality assessment is an essential task in the diagnosis of retinal diseases. Recently, there are emerging deep models to grade quality of retinal images. Current state-of-the-arts either directly transfer classification networks origin ally designed for natural images to quality classification of retinal images or introduce extra image quality priors via multiple CNN branches or independent CNNs. This paper proposes a dark and bright channel prior guided deep network for retinal image quality assessment called GuidedNet. Specifically, the dark and bright channel priors are embedded into the start layer of network to improve the discriminate ability of deep features. In addition, we re-annotate a new retinal image quality dataset called RIQA-RFMiD for further validation. Experimental results on a public retinal image quality dataset Eye-Quality and our re-annotated dataset RIQA-RFMiD demonstrate the effectiveness of the proposed GuidedNet.
A well-trained deep neural network is shown to gain capability of simultaneously restoring two kinds of images, which are completely destroyed by two distinct scattering medias respectively. The network, based on the U-net architecture, can be traine d by blended dataset of speckles-reference images pairs. We experimentally demonstrate the power of the network in reconstructing images which are strongly diffused by glass diffuser or multi-mode fiber. The learning model further shows good generalization ability to reconstruct images that are distinguished from the training dataset. Our work facilitates the study of optical transmission and expands machine learnings application in optics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا