Accurate OH Maser Positions From The SPLASH Survey III: The Final 96 Square Degrees


الملخص بالإنكليزية

We present high spatial resolution observations of ground-state OH masers achieved with the Australia Telescope Compact Array (ATCA). These observations targeted 253 pointing centres containing OH maser candidates at all four ground-state OH transitions identified in the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH) across 96 square degrees of the Southern Galactic plane (332degree$<l<$334degree and $-$2degree$<b<+$2degree, 344degree$<l<$355degree and $-$2degree$<b<+$2degree, 358degree$<l<$4degree and $+$2degree$<b<+$6degree, 5degree$<l<$10degree and $-$2degree$<b<+$2degree). We detect maser emission towards 236 fields and suggest that 7 out of 17 non-detections are due to the slightly lower sensitivity of the ATCA observations, combined with some temporal variability. The superior resolution provided by the ATCA data has allowed us to identify 362 OH maser sites in the 236 target fields. Almost half (160 of 362) of these masers have been detected for the first time. Comparison between these 362 maser sites with information presented in the literature allowed us to categorize 238 sites as evolved star sites (66%), 63 as star formation (17%), eight as supernova remnants and 53 unknown maser sites (15%). We present analysis of the OH masers across the full SPLASH survey range (176 square degrees) and find that the detection rate of 1.7 GHz radio continuum sources (18%) is lower than that previously found at 8.2 and 9.2 GHz (38%). We also find that the velocity separations of evolved star sites with symmetric 1612 MHz maser profiles are generally smaller than those with asymmetric profiles.

تحميل البحث