Accurate determination of the translational correlation function of two-dimensional solids


الملخص بالإنكليزية

The identification of the different phases of a two-dimensional (2d) system, which might be in solid, hexatic, or liquid, requires the accurate determination of the correlation function of the translational and of the bond-orientational order parameters. According to the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory, in the solid phase the translational correlation function decays algebraically, as a consequence of the Mermin-Wagner long-wavelength fluctuations. Recent results have however reported an exponential-like decay. By revisiting different definitions of the translational correlation function commonly used in the literature, here we clarify that the observed exponential-like decay in the solid phase results from an inaccurate determination of the symmetry axis of the solid; the expected power-law behaviour is recovered when the symmetry axis is properly identified. We show that, contrary to the common assumption, the symmetry axis of a 2d solid is not fixed by the direction of its global bond-orientational parameter, and introduce an approach allowing to determine the symmetry axis from a real space analysis of the sample.

تحميل البحث