ﻻ يوجد ملخص باللغة العربية
Solitons on a finite a background, also called breathers, are solutions of the focusing nonlinear Schrodinger equation, which play a pivotal role in the description of rogue waves and modulation instability. The breather family includes Akhmediev breathers (AB), Kuznetsov-Ma (KM), and Peregrine solitons (PS), which have been successfully exploited to describe several physical effects. These families of solutions are actually only particular cases of a more general three-parameter class of solutions originally derived by Akhmediev, Eleonskii and Kulagin [Theor. Math. Phys. {bf 72}, 809--818 (1987)]. Having more parameters to vary, this significantly wider family has a potential to describe many more physical effects of practical interest than its subsets mentioned above. The complexity of this class of solutions prevented researchers to study them deeply. In this paper, we overcome this difficulty and report several new effects that follow from more detailed analysis. Namely, we present the doubly periodic solutions and their Fourier expansions. In particular, we outline some striking properties of these solutions. Among the new effects, we mention (a) regular and shifted recurrence, (b) period doubling and (c) amplification of small periodic perturbations with frequencies outside the conventional modulation instability gain band.
We present doubly-periodic solutions of the infinitely extended nonlinear Schrodinger equation with an arbitrary number of higher-order terms and corresponding free real parameters. Solutions have one additional free variable parameter that allows to
We address the degree of universality of the Fermi-Pasta-Ulam recurrence induced by multisoliton fission from a harmonic excitation by analysing the case of the semiclassical defocusing nonlinear Schrodinger equation, which models nonlinear wave prop
The double-periodic solutions of the focusing nonlinear Schrodinger equation have been previously obtained by the method of separation of variables. We construct these solutions by using an algebraic method with two eigenvalues. Furthermore, we chara
We derive the two-breather solution of the class I infinitely extended nonlinear Schrodinger equation (NLSE). We present a general form of this multi-parameter solution that includes infinitely many free parameters of the equation and free parameters
We consider an integrable generalization of the nonlinear Schrodinger (NLS) equation that was recently derived by one of the authors using bi-Hamiltonian methods. This equation is related to the NLS equation in the same way that the Camassa Holm equa