ترغب بنشر مسار تعليمي؟ اضغط هنا

Transformer Based Reinforcement Learning For Games

79   0   0.0 ( 0 )
 نشر من قبل Uddeshya Upadhyay
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent times have witnessed sharp improvements in reinforcement learning tasks using deep reinforcement learning techniques like Deep Q Networks, Policy Gradients, Actor Critic methods which are based on deep learning based models and back-propagation of gradients to train such models. An active area of research in reinforcement learning is about training agents to play complex video games, which so far has been something accomplished only by human intelligence. Some state of the art performances in video game playing using deep reinforcement learning are obtained by processing the sequence of frames from video games, passing them through a convolutional network to obtain features and then using recurrent neural networks to figure out the action leading to optimal rewards. The recurrent neural network will learn to extract the meaningful signal out of the sequence of such features. In this work, we propose a method utilizing a transformer network which have recently replaced RNNs in Natural Language Processing (NLP), and perform experiments to compare with existing methods.



قيم البحث

اقرأ أيضاً

We introduce ES-ENAS, a simple yet general evolutionary joint optimization procedure by combining continuous optimization via Evolutionary Strategies (ES) and combinatorial optimization via Efficient NAS (ENAS) in a highly scalable and intuitive way. Our main insight is noticing that ES is already a highly distributed algorithm involving hundreds of forward passes which can not only be used for training neural network weights, but also for jointly training a NAS controller, both in a blackbox fashion. By doing so, we also bridge the gap from NAS research in supervised learning settings to the reinforcement learning scenario through this relatively simple marriage between two different yet common lines of research. We demonstrate the utility and effectiveness of our method over a large search space by training highly combinatorial neural network architectures for RL problems in continuous control, via edge pruning and quantization. We also incorporate a wide variety of popular techniques from modern NAS literature including multiobjective optimization along with various controller methods, to showcase their promise in the RL field and discuss possible extensions.
90 - Yunqiu Xu , Meng Fang , Ling Chen 2020
We study reinforcement learning (RL) for text-based games, which are interactive simulations in the context of natural language. While different methods have been developed to represent the environment information and language actions, existing RL ag ents are not empowered with any reasoning capabilities to deal with textual games. In this work, we aim to conduct explicit reasoning with knowledge graphs for decision making, so that the actions of an agent are generated and supported by an interpretable inference procedure. We propose a stacked hierarchical attention mechanism to construct an explicit representation of the reasoning process by exploiting the structure of the knowledge graph. We extensively evaluate our method on a number of man-made benchmark games, and the experimental results demonstrate that our method performs better than existing text-based agents.
Reinforcement learning (RL) research focuses on general solutions that can be applied across different domains. This results in methods that RL practitioners can use in almost any domain. However, recent studies often lack the engineering steps (tric ks) which may be needed to effectively use RL, such as reward shaping, curriculum learning, and splitting a large task into smaller chunks. Such tricks are common, if not necessary, to achieve state-of-the-art results and win RL competitions. To ease the engineering efforts, we distill descriptions of tricks from state-of-the-art results and study how well these tricks can improve a standard deep Q-learning agent. The long-term goal of this work is to enable combining proven RL methods with domain-specific tricks by providing a unified software framework and accompanying insights in multiple domains.
Deep reinforcement learning has achieved many recent successes, but our understanding of its strengths and limitations is hampered by the lack of rich environments in which we can fully characterize optimal behavior, and correspondingly diagnose indi vidual actions against such a characterization. Here we consider a family of combinatorial games, arising from work of Erdos, Selfridge, and Spencer, and we propose their use as environments for evaluating and comparing different approaches to reinforcement learning. These games have a number of appealing features: they are challenging for current learning approaches, but they form (i) a low-dimensional, simply parametrized environment where (ii) there is a linear closed form solution for optimal behavior from any state, and (iii) the difficulty of the game can be tuned by changing environment parameters in an interpretable way. We use these Erdos-Selfridge-Spencer games not only to compare different algorithms, but test for generalization, make comparisons to supervised learning, analyse multiagent play, and even develop a self play algorithm. Code can be found at: https://github.com/rubai5/ESS_Game
OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games. OpenSpiel supports n-player (single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and sequentia l, strictly turn-taking and simultaneous-move, perfect and imperfect information games, as well as traditional multiagent environments such as (partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel also includes tools to analyze learning dynamics and other common evaluation metrics. This document serves both as an overview of the code base and an introduction to the terminology, core concepts, and algorithms across the fields of reinforcement learning, computational game theory, and search.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا