ﻻ يوجد ملخص باللغة العربية
Hybrid organic-inorganic perovskites (HOIPs) have emerged to the forefront of optoelectronic materials advancement in the past few years. Due to the nature of organic compounds within the perovskite structure, its optoelectronic properties are affected by complex interaction and correlation effects between the organic and inorganic ions. Using spectroscopic ellipsometry, we observe two broad plasmonic excitation from the calculated loss function (LF) -Im[varepislon^{-1} (omega)], peak A and B at 3.28 eV and 4.26 eV, respectively.The presence of these two asymmetric peaks in the spectroscopic ellipsometry (SE) spectra indicates the existence of unconventional plasmons at room temperature. This is inferred due to the absence of the zero-crossing in the real part of dielectric function varepsilon_1 (omega). Through combined Near-Edge X-ray Absorption Fine Structure (NEXAFS) and Resonant Photoemission Spectroscopies (ResPES), we observe resonance enhancement peak close to 15 eV in the C K-edge region that unravels a charge transfer event due to the opening of an extra autoionization channel. Additionally, photoluminescence (PL) spectrum confirms the presence of broadband emission originating from the self-trapped emission excitons at 2.38 eV due to the soft 2D-HOIPs crystal structure. We believe that these phenomena directly impact the correlation strength in 2D-HOIPs. Our results have confirmed the existence of unconventional plasmons of 2D-HOIPs at room temperature. Such studies in the emission and plasmonic behavior of perovskites will pave the way for the efficient light emitting devices or lasers with minimal integrations of the materials.
Behaving like atomically-precise two-dimensional quantum wells with non-negligible dielectric contrast, the layered HOIPs have strong electronic interactions leading to tightly bound excitons with binding energies on the order of 500 meV. These stron
The hybrid organic inorganic perovskites (HOIPs) have attracted much attention for their potential applications as novel optoelectronic devices. Remarkably, the Rashba band splitting, together with specific spin orientations in k space (i.e., spin te
For a class of 2D hybrid organic-inorganic perovskite semiconductors based on $pi$-conjugated organic cations, we predict quantitatively how varying the organic and inorganic component allows control over the nature, energy and localization of carrie
Perovskite solar cells have shown remarkable efficiencies beyond 22%, through organic and inorganic cation alloying. However, the role of alkali-metal cations is not well-understood. By using synchrotron-based nano-X-ray fluorescence and complementar
The previously developed bistable amphoteric native defect (BAND) model is used for a comprehensive explanation of the unique photophysical properties and for understanding the remarkable performance of perovskites as photovoltaic materials. It is sh