ﻻ يوجد ملخص باللغة العربية
Using the idea of the quantum inverse scattering method, we introduce the operators $mathbf{B}(x), mathbf{C}(x)$ and $mathbf{tilde{B}}(x), mathbf{tilde{C}}(x)$ corresponding to the off-diagonal entries of the monodromy matrix $T$ for the phase model and $i$-boson model in terms of bc fermions and neutral fermions respectively, thus giving alternative treatment of the KP and BKP hierarchies. We also introduce analogous operators $mathbf{B}^{*}(x)$ and $mathbf{C}^{*}(x)$ for the charged free boson system and show that they are in complete analogy to those of $bc$ fermionic fields. It is proved that the correlation function $langle 0|mathbf{C}(x_N)cdotsmathbf{C}(x_1)mathbf{B}(y_1)cdots $ $mathbf{B}(y_N)|0rangle$ in the $bc$ fermionic fields is the inverse of the correlation function $langle 0|mathbf{C}^{*}(x_N)cdotsmathbf{C}^{*}(x_1)mathbf{B}^{*}(y_1)cdots mathbf{B}^{*}(y_N)|0rangle$ in the charged free bosons.
When a quantum field theory possesses topological excitations in a phase with spontaneously broken symmetry, these are created by operators which are non-local with respect to the order parameter. Due to non-locality, such disorder operators have non
The classification and lattice model construction of symmetry protected topological (SPT) phases in interacting fermion systems are very interesting but challenging. In this paper, we give a systematic fixed point wave function construction of fermio
The boson and fermion particle masses are calculated in a finite quantum field theory. The field theory satisfies Poincare invariance, unitarity and microscopic causality, and all loop graphs are finite to all orders of perturbation theory. The infin
We study the convergence of inner products of free fields over the homogeneous spaces of the de Sitter group and show that the convergence of inner products in the of $N$-particle states is defined by the asymptotic behavior of hypergeometric functio
We show that the associative algebra structure can be incorporated in the BRST quantization formalism for gauge theories such that extension from the corresponding Lie algebra to the associative algebra is achieved using operator quantization of redu