ﻻ يوجد ملخص باللغة العربية
The determinant can be computed by classical circuits of depth $O(log^2 n)$, and therefore it can also be computed in classical space $O(log^2 n)$. Recent progress by Ta-Shma [Ta13] implies a method to approximate the determinant of Hermitian matrices with condition number $kappa$ in quantum space $O(log n + log kappa)$. However, it is not known how to perform the task in less than $O(log^2 n)$ space using classical resources only. In this work, we show that the condition number of a matrix implies an upper bound on the depth complexity (and therefore also on the space complexity) for this task: the determinant of Hermitian matrices with condition number $kappa$ can be approximated to inverse polynomial relative error with classical circuits of depth $tilde O(log n cdot log kappa)$, and in particular one can approximate the determinant for sufficiently well-conditioned matrices in depth $tilde{O}(log n)$. Our algorithm combines Barvinoks recent complex-analytic approach for approximating combinatorial counting problems [Bar16] with the Valiant-Berkowitz-Skyum-Rackoff depth-reduction theorem for low-degree arithmetic circuits [Val83].
We give lower bounds on the performance of two of the most popular sampling methods in practice, the Metropolis-adjusted Langevin algorithm (MALA) and multi-step Hamiltonian Monte Carlo (HMC) with a leapfrog integrator, when applied to well-condition
Recently, Bravyi, Gosset, and K{o}nig (Science, 2018) exhibited a search problem called the 2D Hidden Linear Function (2D HLF) problem that can be solved exactly by a constant-depth quantum circuit using bounded fan-in gates (or QNC^0 circuits), but
We establish a polynomial-time approximation algorithm for partition functions of quantum spin models at high temperature. Our algorithm is based on the quantum cluster expansion of Netov{c}ny and Redig and the cluster expansion approach to designing
We consider the problem of approximately solving constraint satisfaction problems with arity $k > 2$ ($k$-CSPs) on instances satisfying certain expansion properties, when viewed as hypergraphs. Random instances of $k$-CSPs, which are also highly expa
We consider the problem of scattering $n$ robots in a two dimensional continuous space. As this problem is impossible to solve in a deterministic manner, all solutions must be probabilistic. We investigate the amount of randomness (that is, the numbe