ﻻ يوجد ملخص باللغة العربية
The dynamics of self-gravitating fluid bodies is described by the Euler-Einstein system of partial differential equations. The break-down of well-posedness on the fluid-vacuum interface remains a challenging open problem, which is manifested in simulations of oscillating or inspiraling binary neutron-stars. We formulate and implement a well-posed canonical hydrodynamic scheme, suitable for neutron-star simulations in numerical general relativity. The scheme uses a variational principle by Carter-Lichnerowicz stating that barotropic fluid motions are conformally geodesic and Helmholtzs third theorem stating that initially irrotational flows remain irrotational. We apply this scheme in 3+1 numerical general relativity to evolve the canonical momentum of a fluid element via the Hamilton-Jacobi equation. We explore a regularization scheme for the Euler equations, that uses a fiducial atmosphere in hydrostatic equilibrium and allows the pressure to vanish, while preserving strong hyperbolicity on the vacuum boundary. The new regularization scheme resolves a larger number of radial oscillation modes compared to standard, non-equilibrium atmosphere treatments.
In this work we study the theory of linearized gravity via the Hamilton-Jacobi formalism. We make a brief review of this theory and its Lagrangian description, as well as a review of the Hamilton-Jacobi approach for singular systems. Then we apply th
We present the first numerical solutions of the causal, stable relativistic Navier-Stokes equations as formulated by Bemfica, Disconzi, Noronha, and Kovtun (BDNK). For this initial investigation we restrict to plane-symmetric configurations of a conf
The Hamilton-Jacobi analysis for gravity without dynamics is performed. We report a detailed analysis where the complete set of Hamilton-Jacobi constraints, the characteristic equations and the gauge transformations of the theory are found. We compar
We present a new methodology for simulating self-gravitating general-relativistic fluids. In our approach the fluid is modelled by means of Lagrangian particles in the framework of a general-relativistic (GR) Smooth Particle Hydrodynamics (SPH) formu
We investigate the tidal deformability of a superfluid neutron star. We calculate the equilibrium structure in the general relativistic two-fluid formalism with entrainment effect where we take neutron superfluid as one fluid and the other fluid is c