ﻻ يوجد ملخص باللغة العربية
In this work, we introduce a novel abstract framework for the stability and convergence analysis of fully coupled discretisations of the poroelasticity problem and apply it to the analysis of Hybrid High-Order (HHO) schemes. A relevant feature of the proposed framework is that it rests on mild time regularity assumptions that can be derived from an appropriate weak formulation of the continuous problem. To the best of our knowledge, these regularity results for the Biot problem are new. A novel family of HHO discretisation schemes is proposed and analysed, and their performance numerically evaluated.
In this work, we consider the Biot problem with uncertain poroelastic coefficients. The uncertainty is modelled using a finite set of parameters with prescribed probability distribution. We present the variational formulation of the stochastic partia
In this work, we propose and investigate stable high-order collocation-type discretisations of the discontinuous Galerkin method on equidistant and scattered collocation points. We do so by incorporating the concept of discrete least squares into the
We present a residual-based a posteriori error estimator for the hybrid high-order (HHO) method for the Stokes model problem. Both the proposed HHO method and error estimator are valid in two and three dimensions and support arbitrary approximation o
We propose an Extended Hybrid High-Order scheme for the Poisson problem with solution possessing weak singularities. Some general assumptions are stated on the nature of this singularity and the remaining part of the solution. The method is formulate
A number of non-standard finite element methods have been proposed in recent years, each of which derives from a specific class of PDE-constrained norm minimization problems. The most notable examples are $mathcal{L}mathcal{L}^*$ methods. In this wor