ترغب بنشر مسار تعليمي؟ اضغط هنا

Unitary-Coupled Restricted Boltzmann Machine Ansatz for Quantum Simulations

107   0   0.0 ( 0 )
 نشر من قبل Chang-Yu Hsieh
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural-Network Quantum State (NQS) has attracted significant interests as a powerful wave-function ansatz to model quantum phenomena. In particular, a variant of NQS based on the restricted Boltzmann machine (RBM) has been adapted to model the ground state of spin lattices and the electronic structures of small molecules in quantum devices. Despite these progresses, significant challenges remain with the RBM-NQS based quantum simulations. In this work, we present a state-preparation protocol to generate a specific set of complex-valued RBM-NQS, that we name the unitary-coupled RBM-NQS, in quantum circuits. This is a crucial advancement as all prior works deal exclusively with real-valued RBM-NQS for quantum algorithms. With this novel scheme, we achieve (1) modeling complex-valued wave functions, (2) using as few as one ancilla qubit to simulate $M$ hidden spins in an RBM architecture, and (3) avoiding post-selections to improve scalability.



قيم البحث

اقرأ أيضاً

The variational quantum eigensolver (VQE) algorithm combines the ability of quantum computers to efficiently compute expectation values with a classical optimization routine in order to approximate ground state energies of quantum systems. In this pa per, we study the application of VQE to the simulation of molecular energies using the unitary coupled cluster (UCC) ansatz. We introduce new strategies to reduce the circuit depth for the implementation of UCC and improve the optimization of the wavefunction based on efficient classical approximations of the cluster amplitudes. Additionally, we propose an analytical method to compute the energy gradient that reduces the sampling cost for gradient estimation by several orders of magnitude compared to numerical gradients. We illustrate our methodology with numerical simulations for a system of four hydrogen atoms that exhibit strong correlation and show that the circuit depth of VQE using a UCC ansatz can be reduced without introducing significant loss of accuracy in the final wavefunctions and energies.
We present a real-world application that uses a quantum computer. Specifically, we train a RBM using QA for cybersecurity applications. The D-Wave 2000Q has been used to implement QA. RBMs are trained on the ISCX data, which is a benchmark dataset fo r cybersecurity. For comparison, RBMs are also trained using CD. CD is a commonly used method for RBM training. Our analysis of the ISCX data shows that the dataset is imbalanced. We present two different schemes to balance the training dataset before feeding it to a classifier. The first scheme is based on the undersampling of benign instances. The imbalanced training dataset is divided into five sub-datasets that are trained separately. A majority voting is then performed to get the result. Our results show the majority vote increases the classification accuracy up from 90.24% to 95.68%, in the case of CD. For the case of QA, the classification accuracy increases from 74.14% to 80.04%. In the second scheme, a RBM is used to generate synthetic data to balance the training dataset. We show that both QA and CD-trained RBM can be used to generate useful synthetic data. Balanced training data is used to evaluate several classifiers. Among the classifiers investigated, K-Nearest Neighbor (KNN) and Neural Network (NN) perform better than other classifiers. They both show an accuracy of 93%. Our results show a proof-of-concept that a QA-based RBM can be trained on a 64-bit binary dataset. The illustrative example suggests the possibility to migrate many practical classification problems to QA-based techniques. Further, we show that synthetic data generated from a RBM can be used to balance the original dataset.
We propose a novel quantum model for the restricted Boltzmann machine (RBM), in which the visible units remain classical whereas the hidden units are quantized as noninteracting fermions. The free motion of the fermions is parametrically coupled to t he classical signal of the visible units. This model possesses a quantum behaviour such as coherences between the hidden units. Numerical experiments show that this fact makes it more powerful than the classical RBM with the same number of hidden units. At the same time, a significant advantage of the proposed model over the other approaches to the Quantum Boltzmann Machine (QBM) is that it is exactly solvable and efficiently trainable on a classical computer: there is a closed expression for the log-likelihood gradient with respect to its parameters. This fact makes it interesting not only as a model of a hypothetical quantum simulator, but also as a quantum-inspired classical machine-learning algorithm.
341 - Yi Fan , Changsu Cao , Xusheng Xu 2021
Quantum computation represents a revolutionary means for solving problems in quantum chemistry. However, due to the limited coherence time and relatively low gate fidelity in the current noisy intermediate-scale quantum (NISQ) devices, realization of quantum algorithms for large chemical systems remains a major challenge. In this work, we demonstrate how the circuit depth of the unitary coupled cluster ansatz in the algorithm of variational quantum eigensolver can be significantly reduced by an energy-sorting strategy. Specifically, subsets of excitation operators are pre-screened from the unitary coupled-cluster singles and doubles (UCCSD) operator pool according to its contribution to the total energy. The procedure is then iteratively repeated until the convergence of the final energy to within the chemical accuracy. For demonstration, this method has been sucessfully applied to systems of molecules and periodic hydrogen chain. Particularly, a reduction up to 14 times in the number of operators is observed while retaining the accuracy of the origin UCCSD operator pools. This method can be widely extended to other variational ansatz other than UCC.
Generative modeling with machine learning has provided a new perspective on the data-driven task of reconstructing quantum states from a set of qubit measurements. As increasingly large experimental quantum devices are built in laboratories, the ques tion of how these machine learning techniques scale with the number of qubits is becoming crucial. We empirically study the scaling of restricted Boltzmann machines (RBMs) applied to reconstruct ground-state wavefunctions of the one-dimensional transverse-field Ising model from projective measurement data. We define a learning criterion via a threshold on the relative error in the energy estimator of the machine. With this criterion, we observe that the number of RBM weight parameters required for accurate representation of the ground state in the worst case - near criticality - scales quadratically with the number of qubits. By pruning small parameters of the trained model, we find that the number of weights can be significantly reduced while still retaining an accurate reconstruction. This provides evidence that over-parametrization of the RBM is required to facilitate the learning process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا