ﻻ يوجد ملخص باللغة العربية
Neural-Network Quantum State (NQS) has attracted significant interests as a powerful wave-function ansatz to model quantum phenomena. In particular, a variant of NQS based on the restricted Boltzmann machine (RBM) has been adapted to model the ground state of spin lattices and the electronic structures of small molecules in quantum devices. Despite these progresses, significant challenges remain with the RBM-NQS based quantum simulations. In this work, we present a state-preparation protocol to generate a specific set of complex-valued RBM-NQS, that we name the unitary-coupled RBM-NQS, in quantum circuits. This is a crucial advancement as all prior works deal exclusively with real-valued RBM-NQS for quantum algorithms. With this novel scheme, we achieve (1) modeling complex-valued wave functions, (2) using as few as one ancilla qubit to simulate $M$ hidden spins in an RBM architecture, and (3) avoiding post-selections to improve scalability.
The variational quantum eigensolver (VQE) algorithm combines the ability of quantum computers to efficiently compute expectation values with a classical optimization routine in order to approximate ground state energies of quantum systems. In this pa
We present a real-world application that uses a quantum computer. Specifically, we train a RBM using QA for cybersecurity applications. The D-Wave 2000Q has been used to implement QA. RBMs are trained on the ISCX data, which is a benchmark dataset fo
We propose a novel quantum model for the restricted Boltzmann machine (RBM), in which the visible units remain classical whereas the hidden units are quantized as noninteracting fermions. The free motion of the fermions is parametrically coupled to t
Quantum computation represents a revolutionary means for solving problems in quantum chemistry. However, due to the limited coherence time and relatively low gate fidelity in the current noisy intermediate-scale quantum (NISQ) devices, realization of
Generative modeling with machine learning has provided a new perspective on the data-driven task of reconstructing quantum states from a set of qubit measurements. As increasingly large experimental quantum devices are built in laboratories, the ques