ﻻ يوجد ملخص باللغة العربية
We perform a rigorous piecewise-flat discretization of classical general relativity in the first-order formulation, in both 2+1 and 3+1 dimensions, carefully keeping track of curvature and torsion via holonomies. We show that the resulting phase space is precisely that of spin networks, the quantum states of discrete spacetime in loop quantum gravity, with additional degrees of freedom called edge modes, which control the gluing between cells. This work establishes, for the first time, a rigorous proof of the equivalence between spin networks and piecewise-flat geometries with curvature and torsion degrees of freedom. In addition, it demonstrates that careful consideration of edge modes is crucial both for the purpose of this proof and for future work in the field of loop quantum gravity. It also shows that spin networks have a dual description related to teleparallel gravity, where gravity is encoded in torsion instead of curvature degrees of freedom. Finally, it sets the stage for collaboration between the loop quantum gravity community and theoretical physicists working on edge modes from other perspectives, such as quantum electrodynamics, non-abelian gauge theories, and classical gravity.
In pregeometry a metric arises as a composite object at large distances. For short distances we investigate a Yang-Mills theory with fermions and vector fields. The particular representation of the vector fields permits to formulate diffeomorphism in
Different forms of the metric for the Kerr-NUT-(anti-)de Sitter space-time are being widely used in its extension to higher dimensions. The purpose of this note is to relate the parameters that are being used to the physical parameters (mass, rotatio
The stability of black holes and solitons in d-dimensional Anti-de Sitter space-time against scalar field condensation is discussed. The resulting solutions are hairy black holes and solitons, respectively. In particular, we will discuss static black
Using Relativistic Quantum Geometry we study back-reaction effects of space-time inside the causal horizon of a static de Sitter metric, in order to make a quantum thermodynamical description of space-time. We found a finite number of discrete energy
We present an analysis of the behaviour at late-times of linear field perturbations of a Schwarzschild black hole space-time. In particular, we give explicit analytic expressions for the field perturbations (for a specific multipole) of general spin