ترغب بنشر مسار تعليمي؟ اضغط هنا

Diagnostic Image Quality Assessment and Classification in Medical Imaging: Opportunities and Challenges

91   0   0.0 ( 0 )
 نشر من قبل Ukash Nakarmi
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic Resonance Imaging (MRI) suffers from several artifacts, the most common of which are motion artifacts. These artifacts often yield images that are of non-diagnostic quality. To detect such artifacts, images are prospectively evaluated by experts for their diagnostic quality, which necessitates patient-revisits and rescans whenever non-diagnostic quality scans are encountered. This motivates the need to develop an automated framework capable of accessing medical image quality and detecting diagnostic and non-diagnostic images. In this paper, we explore several convolutional neural network-based frameworks for medical image quality assessment and investigate several challenges therein.



قيم البحث

اقرأ أيضاً

The interpretation of medical images is a challenging task, often complicated by the presence of artifacts, occlusions, limited contrast and more. Most notable is the case of chest radiography, where there is a high inter-rater variability in the det ection and classification of abnormalities. This is largely due to inconclusive evidence in the data or subjective definitions of disease appearance. An additional example is the classification of anatomical views based on 2D Ultrasound images. Often, the anatomical context captured in a frame is not sufficient to recognize the underlying anatomy. Current machine learning solutions for these problems are typically limited to providing probabilistic predictions, relying on the capacity of underlying models to adapt to limited information and the high degree of label noise. In practice, however, this leads to overconfident systems with poor generalization on unseen data. To account for this, we propose a system that learns not only the probabilistic estimate for classification, but also an explicit uncertainty measure which captures the confidence of the system in the predicted output. We argue that this approach is essential to account for the inherent ambiguity characteristic of medical images from different radiologic exams including computed radiography, ultrasonography and magnetic resonance imaging. In our experiments we demonstrate that sample rejection based on the predicted uncertainty can significantly improve the ROC-AUC for various tasks, e.g., by 8% to 0.91 with an expected rejection rate of under 25% for the classification of different abnormalities in chest radiographs. In addition, we show that using uncertainty-driven bootstrapping to filter the training data, one can achieve a significant increase in robustness and accuracy.
Self-supervised pretraining followed by supervised fine-tuning has seen success in image recognition, especially when labeled examples are scarce, but has received limited attention in medical image analysis. This paper studies the effectiveness of s elf-supervised learning as a pretraining strategy for medical image classification. We conduct experiments on two distinct tasks: dermatology skin condition classification from digital camera images and multi-label chest X-ray classification, and demonstrate that self-supervised learning on ImageNet, followed by additional self-supervised learning on unlabeled domain-specific medical images significantly improves the accuracy of medical image classifiers. We introduce a novel Multi-Instance Contrastive Learning (MICLe) method that uses multiple images of the underlying pathology per patient case, when available, to construct more informative positive pairs for self-supervised learning. Combining our contributions, we achieve an improvement of 6.7% in top-1 accuracy and an improvement of 1.1% in mean AUC on dermatology and chest X-ray classification respectively, outperforming strong supervised baselines pretrained on ImageNet. In addition, we show that big self-supervised models are robust to distribution shift and can learn efficiently with a small number of labeled medical images.
Advances in computing power, deep learning architectures, and expert labelled datasets have spurred the development of medical imaging artificial intelligence systems that rival clinical experts in a variety of scenarios. The National Institutes of H ealth in 2018 identified key focus areas for the future of artificial intelligence in medical imaging, creating a foundational roadmap for research in image acquisition, algorithms, data standardization, and translatable clinical decision support systems. Among the key issues raised in the report: data availability, need for novel computing architectures and explainable AI algorithms, are still relevant despite the tremendous progress made over the past few years alone. Furthermore, translational goals of data sharing, validation of performance for regulatory approval, generalizability and mitigation of unintended bias must be accounted for early in the development process. In this perspective paper we explore challenges unique to high dimensional clinical imaging data, in addition to highlighting some of the technical and ethical considerations in developing high-dimensional, multi-modality, machine learning systems for clinical decision support.
This paper presents an overview of the emerging area of collaborative intelligence (CI). Our goal is to raise awareness in the signal processing community of the challenges and opportunities in this area of growing importance, where key developments are expected to come from signal processing and related disciplines. The paper surveys the current state of the art in CI, with special emphasis on signal processing-related challenges in feature compression, error resilience, privacy, and system-level design.
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent perceptual IR algorithms based on generative adversarial networks (GANs) have brought in significant improvement on visual performance, but also pose great challenges for quantitative evaluation. Notably, we observe an increasing inconsistency between perceptual quality and the evaluation results. We present two questions: Can existing IQA methods objectively evaluate recent IR algorithms? With the focus on beating current benchmarks, are we getting better IR algorithms? To answer the questions and promote the development of IQA methods, we contribute a large-scale IQA dataset, called Perceptual Image Processing ALgorithms (PIPAL) dataset. Especially, this dataset includes the results of GAN-based IR algorithms, which are missing in previous datasets. We collect more than 1.13 million human judgments to assign subjective scores for PIPAL images using the more reliable Elo system. Based on PIPAL, we present new benchmarks for both IQA and SR methods. Our results indicate that existing IQA methods cannot fairly evaluate GAN-based IR algorithms. While using appropriate evaluation methods is important, IQA methods should also be updated along with the development of IR algorithms. At last, we shed light on how to improve the IQA performance on GAN-based distortion. Inspired by the find that the existing IQA methods have an unsatisfactory performance on the GAN-based distortion partially because of their low tolerance to spatial misalignment, we propose to improve the performance of an IQA network on GAN-based distortion by explicitly considering this misalignment. We propose the Space Warping Difference Network, which includes the novel l_2 pooling layers and Space Warping Difference layers. Experiments demonstrate the effectiveness of the proposed method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا