ﻻ يوجد ملخص باللغة العربية
The dynamic optimality conjecture, postulating the existence of an $O(1)$-competitive online algorithm for binary search trees (BSTs), is among the most fundamental open problems in dynamic data structures. Despite extensive work and some notable progress, including, for example, the Tango Trees (Demaine et al., FOCS 2004), that give the best currently known $O(log log n)$-competitive algorithm, the conjecture remains widely open. One of the main hurdles towards settling the conjecture is that we currently do not have approximation algorithms achieving better than an $O(log log n)$-approximation, even in the offline setting. All known non-trivial algorithms for BSTs so far rely on comparing the algorithms cost with the so-called Wilbers first bound (WB-1). Therefore, establishing the worst-case relationship between this bound and the optimal solution cost appears crucial for further progress, and it is an interesting open question in its own right. Our contribution is two-fold. First, we show that the gap between the WB-1 bound and the optimal solution value can be as large as $Omega(log log n/ log log log n)$; in fact, the gap holds even for several stronger variants of the bound. Second, we provide a simple algorithm, that, given an integer $D>0$, obtains an $O(D)$-approximation in time $expleft(Oleft (n^{1/2^{Omega(D)}}log nright )right )$. In particular, this gives a constant-factor approximation sub-exponential time algorithm. Moreover, we obtain a simpler and cleaner efficient $O(log log n)$-approximation algorithm that can be used in an online setting. Finally, we suggest a new bound, that we call {em Guillotine Bound}, that is stronger than WB, while maintaining its algorithm-friendly nature, that we hope will lead to better algorithms. All our results use the geometric interpretation of the problem, leading to cleaner and simpler analysis.
We study multi-finger binary search trees (BSTs), a far-reaching extension of the classical BST model, with connections to the well-studied $k$-server problem. Finger search is a popular technique for speeding up BST operations when a query sequence
Motivated by recent developments in optical switching and reconfigurable network design, we study dynamic binary search trees (BSTs) in the matching model. In the classical dynamic BST model, the cost of both link traversal and basic reconfiguration
We consider the design of adaptive data structures for searching elements of a tree-structured space. We use a natural generalization of the rotation-based online binary search tree model in which the underlying search space is the set of vertices of
Best match graphs (BMG) are a key intermediate in graph-based orthology detection and contain a large amount of information on the gene tree. We provide a near-cubic algorithm to determine whether a BMG is binary-explainable, i.e., whether it can be
random_tree() is a linear time and space C++ implementation able to create trees of up to a billion nodes for genetic programming and genetic improvement experiments. A 3.60GHz CPU can generate more than 18 million random nodes for GP program trees per second.