ﻻ يوجد ملخص باللغة العربية
We present an algorithm for compiling arbitrary unitaries into a sequence of gates native to a quantum processor. As accurate CNOT gates are hard for the foreseeable Noisy- Intermediate-Scale Quantum devices era, our A* inspired algorithm attempts to minimize their count, while accounting for connectivity. We discuss the search strategy together with metrics to expand the solution frontier. For a workload of circuits with complexity appropriate for the NISQ era, we produce solutions well within the best upper bounds published in literature and match or exceed hand tuned implementations, as well as other existing synthesis alternatives. In particular, when comparing against state-of-the-art available synthesis packages we show 2.4x average (up to 5.3x) reduction in CNOT count. We also show how to re-target the algorithm for a different chip topology and native gate set, while obtaining similar quality results. We believe that empirical tools like ours can facilitate algorithmic exploration, gate set discovery for quantum processor designers, as well as providing useful optimization blocks within the quantum compilation tool-chain.
We provide an explicit construction of a universal gate set for continuous-variable quantum computation with microwave circuits. Such a universal set has been first proposed in quantum-optical setups, but its experimental implementation has remained
Before quantum error correction (QEC) is achieved, quantum computers focus on noisy intermediate-scale quantum (NISQ) applications. Compared to the well-known quantum algorithms requiring QEC, like Shors or Grovers algorithm, NISQ applications have d
Starting from the idea of Quantum Computing which is a concept that dates back to 80s, we come to the present day where we can perform calculations on real quantum computers. This sudden development of technology opens up new scenarios that quickly l
High-fidelity single- and two-qubit gates are essential building blocks for a fault-tolerant quantum computer. While there has been much progress in suppressing single-qubit gate errors in superconducting qubit systems, two-qubit gates still suffer f
Farhi and others have introduced the notion of solving NP problems using adiabatic quantum com- puters. We discuss an application of this idea to the problem of integer factorization, together with a technique we call gluing which can be used to buil