ﻻ يوجد ملخص باللغة العربية
Context. HD72946 is a bright and nearby solar-type star hosting a low-mass companion at long period (P~16 yr) detected with the radial velocities (RV) method. The companion has a minimum mass of 60.4+/-2.2 MJ and might be a brown dwarf. Its expected semi-major axis of ~243 mas makes it a suitable target for further characterization with high-contrast imaging, in particular to measure its inclination, mass, and spectrum and thus definitely establish its substellar nature. Aims. We aim to further characterize the orbit, atmosphere, and physical nature of HD72946B. Methods. We present high-contrast imaging data in the near-infrared with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument. We also use proper motion measurements of the star from Hipparcos and Gaia. Results. The SPHERE data reveal a point source with a contrast of ~9 mag at a projected separation of ~235 mas. No other point sources are detected in the field of view. By jointly fitting the RV, imaging, and proper motion data, we constrain all the orbital parameters of HD72946B and assess a dynamical mass of 72.4+/-1.6 MJ and a semi-major axis of 6.45$^{+0.08}_{-0.07}$ au. Empirical comparison of its IFS spectrum to template dwarfs indicates a spectral type of L5.0+/-1.5. The J-H3 color is close to the expectations of the DUSTY models and suggests a cloudy atmosphere. Comparison with atmospheric models of the spectrophotometry suggests an effective temperature of ~1700 K. The bolometric luminosity (log(L/LS)=-4.11+/-0.10 dex) and dynamical mass of HD72946B are more compatible with evolutionary models for an age range of ~0.9-3 Gyr. The formation mechanism of the companion is currently unclear as it appears slightly away from the bulk of model predictions. HD72946B is currently the closest benchmark brown dwarf companion to a solar-type star with imaging, RV, and proper motion measurements.
The study of high contrast imaged brown dwarfs and exoplanets depends strongly on evolutionary models. To estimate the mass of a directly imaged substellar object, its extracted photometry or spectrum is used and adjusted with model spectra together
Context. Detecting and characterizing substellar companions for which the luminosity, mass, and age can be determined independently is of utter importance to test and calibrate the evolutionary models due to uncertainties in their formation mechanism
Context. HD13724 is a nearby solar-type star at 43.48 $pm$ 0.06 pc hosting a long-period low-mass brown dwarf detected with the CORALIE echelle spectrograph as part of the historical CORALIE radial-velocity search for extra-solar planets. The compani
We aim to reveal the nature of the reddest known substellar companion HD 206893 B by studying its near-infrared colors and spectral morphology and by investigating its orbital motion. We fit atmospheric models for giant planets and brown dwarfs and p
The determination of the fundamental properties (mass, separation, age, gravity and atmospheric properties) of brown dwarf companions allows us to infer crucial informations on their formation and evolution mechanisms. Spectroscopy of substellar comp