ﻻ يوجد ملخص باللغة العربية
Understanding the physical processes in the solar wind and corona which actively contribute to heating, acceleration, and dissipation is a primary objective of NASAs Parker Solar Probe (PSP) mission. Observations of coherent electromagnetic waves at ion scales suggests that linear cyclotron resonance and non-linear processes are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of coherent waves in the first perihelion encounter of PSP demonstrates the presence of transverse electromagnetic waves at ion resonant scales which are observed in 30-50% of radial field intervals. Average wave amplitudes of approximately 4 nT are measured, while the mean duration of wave events is of order 20 seconds; however long duration wave events can exist without interruption on hour-long timescales. Though ion scale waves are preferentially observed during intervals with a radial mean magnetic field, we show that measurement constraints, associated with single spacecraft sampling of quasi-parallel waves superposed with anisotropic turbulence, render the measured quasi-parallel ion-wave spectrum unobservable when the mean magnetic field is oblique to the solar wind flow; these results imply that the occurrence of coherent ion-scale waves is not limited to a radial field configuration. The lack of strong radial scaling of characteristic wave amplitudes and duration suggests that the waves are generated {em{in-situ}} through plasma instabilities. Additionally, observations of proton distribution functions indicate that temperature anisotropy may drive the observed ion-scale waves.
We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum jus
We analyze the evolution of the interplanetary magnetic field spatial structure by examining the inner heliospheric autocorrelation function, using Helios 1 and Helios 2 in situ observations. We focus on the evolution of the integral length scale (la
Switchbacks are discrete angular deflections in the solar wind magnetic field that have been observed throughout the heliosphere. Recent observations by Parker Solar Probe (PSP) have revealed the presence of patches of switchbacks on the scale of hou
(Abridged) Aim: We attempt to determine robust estimates of the heliospheric magnetic flux ($Phi_H$) using Parker Solar Probe (PSP) data, analyze how susceptible this is to overestimation compared to the true open flux ($Phi_{open}$), assess its depe
We present a statistical analysis for the characteristics and spatial evolution of the interplanetary discontinuities (IDs) in the solar wind, from 0.13 to 0.9 au, by using the Parker Solar Probe measurements on Orbits 4 and 5. 3948 IDs have been col