Observations and 3D MHD Modeling of a Confined Helical Jet Launched by a Filament Eruption


الملخص بالإنكليزية

We present a detailed analysis of a confined filament eruption and jet associated with a C1.5 class solar flare. Multi-wavelength observations from GONG and SDO reveal the filament forming over several days following the emergence and then partial cancellation of a minority polarity spot within a decaying bipolar active region. The emergence is also associated with the formation of a 3D null point separatrix that surrounds the minority polarity. The filament eruption occurs concurrent with brightenings adjacent to and below the filament, suggestive of breakout and flare reconnection, respectively. The erupting filament material becomes partially transferred into a strong outflow jet (~ 60 km/s) along coronal loops, becoming guided back towards the surface. Utilising high resolution H$alpha$ observations from SST/CRISP, we construct velocity maps of the outflows demonstrating their highly structured but broadly helical nature. We contrast the observations with a 3D MHD simulation of a breakout jet in a closed-field background and find close qualitative agreement. We conclude that the suggested model provides an intuitive mechanism for transferring twist/helicity in confined filament eruptions, thus validating the applicability of the breakout model not only to jets and coronal mass ejections but also to confined eruptions and flares.

تحميل البحث