ﻻ يوجد ملخص باللغة العربية
Two algorithms are proposed to simulate space-time Gaussian random fields with a covariance function belonging to an extended Gneiting class, the definition of which depends on a completely monotone function associated with the spatial structure and a conditionally negative definite function associated with the temporal structure. In both cases, the simulated random field is constructed as a weighted sum of cosine waves, with a Gaussian spatial frequency vector and a uniform phase. The difference lies in the way to handle the temporal component. The first algorithm relies on a spectral decomposition in order to simulate a temporal frequency conditional upon the spatial one, while in the second algorithm the temporal frequency is replaced by an intrinsic random field whose variogram is proportional to the conditionally negative definite function associated with the temporal structure. Both algorithms are scalable as their computational cost is proportional to the number of space-time locations, which may be unevenly spaced in space and/or in time. They are illustrated and validated through synthetic examples.
We characterize completely the Gneiting class of space-time covariance functions and give more relaxed conditions on the involved functions. We then show necessary conditions for the construction of compactly supported functions of the Gneiting type.
Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable problem, since the likelihood function is intractable. The exploration of the posterior distribution of such models is typically carried out with a sophisti
Mexico City tracks ground-level ozone levels to assess compliance with national ambient air quality standards and to prevent environmental health emergencies. Ozone levels show distinct daily patterns, within the city, and over the course of the year
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs
We consider identification and estimation of nonseparable sample selection models with censored selection rules. We employ a control function approach and discuss different objects of interest based on (1) local effects conditional on the control fun