ﻻ يوجد ملخص باللغة العربية
Let $G=(V,E)$ be a finite connected graph along with a coloring of the vertices of $G$ using the colors in a given set $X$. In this paper, we introduce multi-color forcing, a generalization of zero-forcing on graphs, and give conditions in which the multi-color forcing process terminates regardless of the number of colors used. We give an upper bound on the number of steps required to terminate a forcing procedure in terms of the number of vertices in the graph on which the procedure is being applied. We then focus on multi-color forcing with three colors and analyze the end states of certain families of graphs, including complete graphs, complete bipartite graphs, and paths, based on various initial colorings. We end with a few directions for future research.
Tuza [1992] proved that a graph with no cycles of length congruent to $1$ modulo $k$ is $k$-colorable. We prove that if a graph $G$ has an edge $e$ such that $G-e$ is $k$-colorable and $G$ is not, then for $2leq rleq k$, the edge $e$ lies in at least
In this paper we compare the brushing number of a graph with the zero-forcing number of its line graph. We prove that the zero-forcing number of the line graph is an upper bound for the brushing number by constructing a brush configuration based on a
The minimum forcing number of a graph $G$ is the smallest number of edges simultaneously contained in a unique perfect matching of $G$. Zhang, Ye and Shiu cite{HDW} showed that the minimum forcing number of any fullerene graph was bounded below by $3
Let $c:E(G)to [k]$ be an edge-coloring of a graph $G$, not necessarily proper. For each vertex $v$, let $bar{c}(v)=(a_1,ldots,a_k)$, where $a_i$ is the number of edges incident to $v$ with color $i$. Reorder $bar{c}(v)$ for every $v$ in $G$ in noninc
Let $G$ be a simple graph with $2n$ vertices and a perfect matching. The forcing number $f(G,M)$ of a perfect matching $M$ of $G$ is the smallest cardinality of a subset of $M$ that is contained in no other perfect matching of $G$. Among all perfect