ترغب بنشر مسار تعليمي؟ اضغط هنا

Where Did They Come From, Where Did They Go. Grazing Fireballs

176   0   0.0 ( 0 )
 نشر من قبل Patrick Shober
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For centuries extremely-long grazing fireball displays have fascinated observers and inspired people to ponder about their origins. The Desert Fireball Network (DFN) is the largest single fireball network in the world, covering about one third of Australian skies. This expansive size has enabled us to capture a majority of the atmospheric trajectory of a spectacular grazing event that lasted over90 seconds, penetrated as deep as ~58.5km, and traveled over 1,300 km through the atmosphere before exiting back into interplanetary space. Based on our triangulation and dynamic analyses of the event, we have estimated the initial mass to be at least 60 kg, which would correspond to a30 cm object given a chondritic density (3500 kg m-3). However, this initial mass estimate is likely a lower bound, considering the minimal deceleration observed in the luminous phase. The most intriguing quality of this close encounter is that the meteoroid originated from an Apollo-type orbit and was inserted into a Jupiter-family comet (JFC) orbit due to the net energy gained during the close encounter with the Earth. Based on numerical simulations, the meteoroid will likely spend ~200kyrs on a JFC orbit and have numerous encounters with Jupiter, the first of which will occur in January-March 2025. Eventually the meteoroid will likely be ejected from the Solar System or be flung into a trans-Neptunian orbit.



قيم البحث

اقرأ أيضاً

RR Lyrae stars (RRLS) belong to population II and are generally used as a tracer of the host galaxy halo. The surface as well as vertical distribution of RRLS in the inner Large Magellanic Cloud (LMC) are studied to understand whether these stars are actually formed in the halo. RRLS identified by the OGLE III survey are used to estimate their number density distribution. The scale-height of their distribution is estimated using extinction corrected average magnitudes of ab type stars. The density distribution mimics the bar, confirming results in the literature. The distribution of their scale height indicates that there may be two populations, one with smaller scale-height, very similar to the red clump stars and the other, much larger. The distribution of the reddening-corrected magnitude along the minor axis shows variation, suggesting an inclination. The inclination is estimated to be i = 31.3 (3.5) degrees, very similar to the inclination of the disk. Thus, the RRLS in the inner LMC mimic the bar and inclination of the disk, suggesting that a major fraction of RRLS is formed in the disk of the LMC. The results indicate that the RRLS in the inner LMC trace the disk and probably the inner halo. They do not trace the extended metal-poor halo of the LMC. We suggest that a major star formation event happened in the LMC at 10-12 Gyrs ago, resulting in the formation of most of the inner RRLS, as well as probably the globular clusters, inner halo and the disk of the LMC.
We present a summary of our understanding of Type Ia Supernova progenitors, mostly discussing the observational approach. The main goal of this review is to provide the non-specialist with a sufficiently comprehensive view of where we stand.
Grain growth during star formation affects the physical and chemical processes in the evolution of star-forming clouds. We investigate the origin of the millimeter (mm)-sized grains recently observed in Class I protostellar envelopes. We use the coag ulation model developed in our previous paper and find that a hydrogen number density of as high as $10^{10}~{rm cm^{-3}}$, instead of the typical density $10^5~{rm cm^{-3}}$, is necessary for the formation of mm-sized grains. Thus, we test a hypothesis that such large grains are transported to the envelope from the inner, denser parts, finding that gas drag by outflow efficiently launches the large grains as long as the central object has not grown to $gtrsim 0.1$ M$_{odot}$. By investigating the shattering effect on the mm-sized grains, we ensure that the large grains are not significantly fragmented after being injected in the envelope. We conclude that the mm-sized grains observed in the protostellar envelopes are not formed in the envelopes but formed in the inner parts of the star-forming regions and transported to the envelopes before a significant mass growth of the central object, and that they survive in the envelopes.
The finding that massive galaxies grow with cosmic time fired the starting gun for the search of objects which could have survived up to the present day without suffering substantial changes (neither in their structures, neither in their stellar popu lations). Nevertheless, and despite the community efforts, up to now only one firm candidate to be considered one of these relics is known: NGC 1277. Curiously, this galaxy is located at the centre of one of the most rich near galaxy clusters: Perseus. Is its location a matter of chance? Should relic hunters focus their search on galaxy clusters? In order to reply this question, we have performed a simultaneous and analogous analysis using simulations (Millennium I-WMAP7) and observations (New York University Value-Added Galaxy Catalogue). Our results in both frameworks agree: it is more probable to find relics in high density environments.
The recent LIGO detection of gravitational waves (GW150914), likely originating from the merger of two $sim 30 M_odot$ black holes suggests progenitor stars of low metallicity ($[Z/Z_odot] lesssim 0.3$), constraining when and where the progenitor of GW150914 may have formed. We combine estimates of galaxy properties (metallicity, star formation rate and merger rate) across cosmic time to predict the low redshift black hole - black hole merger rate as a function of present day host galaxy mass, $M_mathrm{gal}$, and the formation redshift of the progenitor system $z_mathrm{form}$ for different progenitor metallicities $Z_mathrm{c}$. At $Z_mathrm{c}=0.1 Z_odot$, the signal is dominated by binaries in massive galaxies with $z_mathrm{form}simeq 2$, with a small contribution from binaries formed around $z_mathrm{form}simeq 0.5$ in dwarf galaxies. For $Z_mathrm{c}=0.01Z_odot$, fast mergers are possible and very recent star formation in dwarfs likely dominates. Additional gravitational wave detections from merging massive black holes will provide constraints on the mass-metallicity relation and massive star formation at high redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا