ﻻ يوجد ملخص باللغة العربية
State-of-the-art methods for relation extraction consider the sentential context by modeling the entire sentence. However, syntactic indicators, certain phrases or words like prepositions that are more informative than other words and may be beneficial for identifying semantic relations. Other approaches using fixed text triggers capture such information but ignore the lexical diversity. To leverage both syntactic indicators and sentential contexts, we propose an indicator-aware approach for relation extraction. Firstly, we extract syntactic indicators under the guidance of syntactic knowledge. Then we construct a neural network to incorporate both syntactic indicators and the entire sentences into better relation representations. By this way, the proposed model alleviates the impact of noisy information from entire sentences and breaks the limit of text triggers. Experiments on the SemEval-2010 Task 8 benchmark dataset show that our model significantly outperforms the state-of-the-art methods.
Document-level relation extraction has attracted much attention in recent years. It is usually formulated as a classification problem that predicts relations for all entity pairs in the document. However, previous works indiscriminately represent int
Aspect Sentiment Triplet Extraction (ASTE) aims to extract triplets from sentences, where each triplet includes an entity, its associated sentiment, and the opinion span explaining the reason for the sentiment. Most existing research addresses this p
Semantic relationships, such as hyponym-hypernym, cause-effect, meronym-holonym etc. between a pair of entities in a sentence are usually reflected through syntactic patterns. Automatic extraction of such patterns benefits several downstream tasks, i
The premise of manual keyphrase annotation is to read the corresponding content of an annotated object. Intuitively, when we read, more important words will occupy a longer reading time. Hence, by leveraging human reading time, we can find the salien
One of the biggest bottlenecks in building accurate, high coverage neural open IE systems is the need for large labelled corpora. The diversity of open domain corpora and the variety of natural language expressions further exacerbate this problem. In