ترغب بنشر مسار تعليمي؟ اضغط هنا

Intelligent Reflecting Surface Enhanced Wireless Network: Two-timescale Beamforming Optimization

223   0   0.0 ( 0 )
 نشر من قبل Ming-Min Zhao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Intelligent reflecting surface (IRS) has drawn a lot of attention recently as a promising new solution to achieve high spectral and energy efficiency for future wireless networks. By utilizing massive low-cost passive reflecting elements, the wireless propagation environment becomes controllable and thus can be made favorable for improving the communication performance. Prior works on IRS mainly rely on the instantaneous channel state information (I-CSI), which, however, is practically difficult to obtain for IRS-associated links due to its passive operation and large number of elements. To overcome this difficulty, we propose in this paper a new two-timescale (TTS) transmission protocol to maximize the achievable average sum-rate for an IRS-aided multiuser system under the general correlated Rician channel model. Specifically, the passive IRS phase-shifts are first optimized based on the statistical CSI (S-CSI) of all links, which varies much slowly as compared to their I-CSI, while the transmit beamforming/precoding vectors at the access point (AP) are then designed to cater to the I-CSI of the users effective channels with the optimized IRS phase-shifts, thus significantly reducing the channel training overhead and passive beamforming complexity over the existing schemes based on the I-CSI of all channels. For the single-user case, a novel penalty dual decomposition (PDD)-based algorithm is proposed, where the IRS phase-shifts are updated in parallel to reduce the computational time. For the multiuser case, we propose a general TTS optimization algorithm by constructing a quadratic surrogate of the objective function, which cannot be explicitly expressed in closed-form. Simulation results are presented to validate the effectiveness of our proposed algorithms and evaluate the impact of S-CSI and channel correlation on the system performance.



قيم البحث

اقرأ أيضاً

316 - Ming-Min Zhao , An Liu , Yubo Wan 2020
Intelligent reflecting surface (IRS) is an emerging technology that is able to reconfigure the wireless channel via tunable passive signal reflection and thereby enhance the spectral and energy efficiency of wireless networks cost-effectively. In thi s paper, we study an IRS-aided multiuser multiple-input single-output (MISO) wireless system and adopt the two-timescale (TTS) transmission to reduce the signal processing complexity and channel training overhead as compared to the existing schemes based on the instantaneous channel state information (I-CSI), and at the same time, exploit the multiuser channel diversity in transmission scheduling. Specifically, the long-term passive beamforming is designed based on the statistical CSI (S-CSI) of all links, while the short-term active beamforming is designed to cater to the I-CSI of all users reconfigured channels with optimized IRS phase shifts. We aim to minimize the average transmit power at the access point (AP), subject to the users individual quality of service (QoS) constraints. The formulated stochastic optimization problem is non-convex and difficult to solve since the long-term and short-term design variables are complicatedly coupled in the QoS constraints. To tackle this problem, we propose an efficient algorithm, called the primal-dual decomposition based TTS joint active and passive beamforming (PDD-TJAPB), where the original problem is decomposed into a long-term problem and a family of short-term problems, and the deep unfolding technique is employed to extract gradient information from the short-term problems to construct a convex surrogate problem for the long-term problem. The proposed algorithm is proved to converge to a stationary solution of the original problem almost surely. Simulation results are presented which demonstrate the advantages and effectiveness of the proposed algorithm as compared to benchmark schemes.
164 - Ming-Min Zhao , An Liu , Rui Zhang 2020
In intelligent reflecting surface (IRS) aided wireless communication systems, channel state information (CSI) is crucial to achieve its promising passive beamforming gains. However, CSI errors are inevitable in practice and generally correlated over the IRS reflecting elements due to the limited training with discrete phase shifts, which degrade the data transmission rate and reliability. In this paper, we focus on investigating the effect of CSI errors to the outage performance in an IRS-aided multiuser downlink communication system. Specifically, we aim to jointly optimize the active transmit precoding vectors at the access point (AP) and passive discrete phase shifts at the IRS to minimize the APs transmit power, subject to the constraints on the maximum CSI-error induced outage probability for the users. First, we consider the single-user case and derive the users outage probability in terms of the mean signal power (MSP) and variance of the received signal at the user. Since there is a trade-off in tuning these two parameters to minimize the outage probability, we propose to maximize their weighted sum with the optimal weight found by one-dimensional search. Then, for the general multiuser case, since the users outage probabilities are difficult to obtain in closed-form due to the inter-user interference, we propose a novel constrained stochastic successive convex approximation (CSSCA) algorithm, which replaces the non-convex outage probability constraints with properly designed convex surrogate approximations. Simulation results verify the effectiveness of the proposed robust beamfoming algorithms and show their significant performance improvement over various benchmark schemes.
The performance of a device-to-device (D2D) underlay communication system is limited by the co-channel interference between cellular users (CUs) and D2D devices. To address this challenge, an intelligent reflecting surface (IRS) aided D2D underlay sy stem is studied in this paper. A two-timescale optimization scheme is proposed to reduce the required channel training and feedback overhead, where transmit beamforming at the base station (BS) and power control at the D2D transmitter are adapted to instantaneous effective channel state information (CSI); and the IRS phase shifts are adapted to slow-varying channel mean. Based on the two-timescale optimization scheme, we aim to maximize the D2D ergodic rate subject to a given outage probability constrained signal-to-interference-plus-noise ratio (SINR) target for the CU. The two-timescale problem is decoupled into two sub-problems, and the two sub-problems are solved iteratively with closed-form expressions. Numerical results verify that the two-timescale based optimization performs better than several baselines, and also demonstrate a favorable trade-off between system performance and CSI overhead.
103 - Chao Feng , Haiquan Lu , Yong Zeng 2021
Intelligent reflecting surface (IRS) is a promising technology for wireless communications, thanks to its potential capability to engineer the radio environment. However, in practice, such an envisaged benefit is attainable only when the passive IRS is of a sufficiently large size, for which the conventional uniform plane wave (UPW)-based channel model may become inaccurate. In this paper, we pursue a new channel modelling and performance analysis for wireless communications with extremely large-scale IRS (XL-IRS). By taking into account the variations in signals amplitude and projected aperture across different reflecting elements, we derive both lower- and upper-bounds of the received signal-to-noise ratio (SNR) for the general uniform planar array (UPA)-based XL-IRS. Our results reveal that, instead of scaling quadratically with the increased number of reflecting elements M as in the conventional UPW model, the SNR under the more practically applicable non-UPW model increases with M only with a diminishing return and gets saturated eventually. To gain more insights, we further study the special case of uniform linear array (ULA)-based XL-IRS, for which a closed-form SNR expression in terms of the IRS size and transmitter/receiver location is derived. This result shows that the SNR mainly depends on the two geometric angles formed by the transmitter/receiver locations with the IRS, as well as the boundary points of the IRS. Numerical results validate our analysis and demonstrate the importance of proper channel modelling for wireless communications aided by XL-IRS.
In this paper, the minimum mean square error (MMSE) channel estimation for intelligent reflecting surface (IRS) assisted wireless communication systems is investigated. In the considered setting, each row vector of the equivalent channel matrix from the base station (BS) to the users is shown to be Bessel $K$ distributed, and all these row vectors are independent of each other. By introducing a Gaussian scale mixture model, we obtain a closed-form expression for the MMSE estimate of the equivalent channel, and determine analytical upper and lower bounds on the mean square error. Using the central limit theorem, we conduct an asymptotic analysis of the MMSE estimate, and show that the upper bound on the mean square error of the MMSE estimate is equal to the asymptotic mean square error of the MMSE estimation when the number of reflecting elements at the IRS tends to infinity. Numerical simulations show that the gap between the upper and lower bounds are very small, and they almost overlap with each other at medium signal-to-noise ratio (SNR) levels and moderate number of elements at the IRS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا