ترغب بنشر مسار تعليمي؟ اضغط هنا

A Robust Self-Learning Method for Fully Unsupervised Cross-Lingual Mappings of Word Embeddings: Making the Method Robustly Reproducible as Well

112   0   0.0 ( 0 )
 نشر من قبل Nicolas Garneau
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we reproduce the experiments of Artetxe et al. (2018b) regarding the robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. We show that the reproduction of their method is indeed feasible with some minor assumptions. We further investigate the robustness of their model by introducing four new languages that are less similar to English than the ones proposed by the original paper. In order to assess the stability of their model, we also conduct a grid search over sensible hyperparameters. We then propose key recommendations applicable to any research project in order to deliver fully reproducible research.



قيم البحث

اقرأ أيضاً

In recent years, topological data analysis has been utilized for a wide range of problems to deal with high dimensional noisy data. While text representations are often high dimensional and noisy, there are only a few work on the application of topol ogical data analysis in natural language processing. In this paper, we introduce a novel algorithm to extract topological features from word embedding representation of text that can be used for text classification. Working on word embeddings, topological data analysis can interpret the embedding high-dimensional space and discover the relations among different embedding dimensions. We will use persistent homology, the most commonly tool from topological data analysis, for our experiment. Examining our topological algorithm on long textual documents, we will show our defined topological features may outperform conventional text mining features.
Generative adversarial networks (GANs) have succeeded in inducing cross-lingual word embeddings -- maps of matching words across languages -- without supervision. Despite these successes, GANs performance for the difficult case of distant languages i s still not satisfactory. These limitations have been explained by GANs incorrect assumption that source and target embedding spaces are related by a single linear mapping and are approximately isomorphic. We assume instead that, especially across distant languages, the mapping is only piece-wise linear, and propose a multi-adversarial learning method. This novel method induces the seed cross-lingual dictionary through multiple mappings, each induced to fit the mapping for one subspace. Our experiments on unsupervised bilingual lexicon induction show that this method improves performance over previous single-mapping methods, especially for distant languages.
We consider the task of aligning two sets of points in high dimension, which has many applications in natural language processing and computer vision. As an example, it was recently shown that it is possible to infer a bilingual lexicon, without supe rvised data, by aligning word embeddings trained on monolingual data. These recent advances are based on adversarial training to learn the mapping between the two embeddings. In this paper, we propose to use an alternative formulation, based on the joint estimation of an orthogonal matrix and a permutation matrix. While this problem is not convex, we propose to initialize our optimization algorithm by using a convex relaxation, traditionally considered for the graph isomorphism problem. We propose a stochastic algorithm to minimize our cost function on large scale problems. Finally, we evaluate our method on the problem of unsupervised word translation, by aligning word embeddings trained on monolingual data. On this task, our method obtains state of the art results, while requiring less computational resources than competing approaches.
Despite interest in using cross-lingual knowledge to learn word embeddings for various tasks, a systematic comparison of the possible approaches is lacking in the literature. We perform an extensive evaluation of four popular approaches of inducing c ross-lingual embeddings, each requiring a different form of supervision, on four typographically different language pairs. Our evaluation setup spans four different tasks, including intrinsic evaluation on mono-lingual and cross-lingual similarity, and extrinsic evaluation on downstream semantic and syntactic applications. We show that models which require expensive cross-lingual knowledge almost always perform better, but cheaply supervised models often prove competitive on certain tasks.
We propose a new approach for learning contextualised cross-lingual word embeddings based only on a small parallel corpus (e.g. a few hundred sentence pairs). Our method obtains word embeddings via an LSTM-based encoder-decoder model that performs bi directional translation and reconstruction of the input sentence. Through sharing model parameters among different languages, our model jointly trains the word embeddings in a common multilingual space. We also propose a simple method to combine word and subword embeddings to make use of orthographic similarities across different languages. We base our experiments on real-world data from endangered languages, namely Yongning Na, Shipibo-Konibo and Griko. Our experiments on bilingual lexicon induction and word alignment tasks show that our model outperforms existing methods by a large margin for most language pairs. These results demonstrate that, contrary to common belief, an encoder-decoder translation model is beneficial for learning cross-lingual representations, even in extremely low-resource scenarios.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا