ﻻ يوجد ملخص باللغة العربية
We report terahertz (THz) second harmonic generation (SHG) in superconductors (SC) with inversion symmetric equilibrium states that forbid even-order nonlinearities. Such SHG signal is observed in single-pulse emission by periodic driving with a multi-cycle THz electric field tuned below the SC energy gap and vanishes above the SC critical temperature. We explain the microscopic physics by a dynamical symmetry breaking principle at sub-THz-cycle by using quantum kinetic modeling of the interplay between strong THz-lightwave nonlinearity and pulse propagation. The resulting non-zero integrated pulse area inside the SC drives lightwave nonlinear supercurrents due to sub--cycle Cooper pair acceleration, in contrast to d.c.-biased superconductors, which can be controlled by the bandstructure and the THz pump field.
We demonstrate pronounced electric-field-induced second-harmonic generation in naturally inversion symmetric 2H stacked bilayer MoS$_{2}$ embedded into microcapacitor devices. By applying strong external electric field perturbations ($|F| = pm 2.6 MV
Giant second-harmonic generation (SHG) in the terahertz (THz) frequency range is observed in a thin film of an s-wave superconductor NbN, where the time-reversal ($mathcal{T}$-) and space-inversion ($mathcal{P}$-) symmetries are simultaneously broken
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic con
We investigate the structural and magnetic origins of the unusual ultrafast second-harmonicgeneration (SHG) response of femtosecond-laser-excited nickel oxide (NiO) previously attributed to oscillatory reorientation dynamics of the magnetic structure
We present a gauge-invariant density matrix description of non-equilibrium superconductor (SC) states with spatial and temporal correlations driven by intense terahertz (THz) lightwaves. We derive superconductor Bloch--Maxwell equations of motion tha