ترغب بنشر مسار تعليمي؟ اضغط هنا

LEGaTO: Low-Energy, Secure, and Resilient Toolset for Heterogeneous Computing

250   0   0.0 ( 0 )
 نشر من قبل Behzad Salami
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The LEGaTO project leverages task-based programming models to provide a software ecosystem for Made in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC, balanced with the security and resilience challenges. LEGaTO is an ongoing three-year EU H2020 project started in December 2017.



قيم البحث

اقرأ أيضاً

The growing size of modern datasets necessitates splitting a large scale computation into smaller computations and operate in a distributed manner. Adversaries in a distributed system deliberately send erroneous data in order to affect the computatio n for their benefit. Boolean functions are the key components of many applications, e.g., verification functions in blockchain systems and design of cryptographic algorithms. We consider the problem of computing a Boolean function in a distributed computing system with particular focus on emph{security against Byzantine workers}. Any Boolean function can be modeled as a multivariate polynomial with high degree in general. However, the security threshold (i.e., the maximum number of adversarial workers can be tolerated such that the correct results can be obtained) provided by the recent proposed Lagrange Coded Computing (LCC) can be extremely low if the degree of the polynomial is high. We propose three different schemes called emph{coded Algebraic normal form (ANF)}, emph{coded Disjunctive normal form (DNF)} and emph{coded polynomial threshold function (PTF)}. The key idea of the proposed schemes is to model it as the concatenation of some low-degree polynomials and threshold functions. In terms of the security threshold, we show that the proposed coded ANF and coded DNF are optimal by providing a matching outer bound.
For mitigating Byzantine behaviors in federated learning (FL), most state-of-the-art approaches, such as Bulyan, tend to leverage the similarity of updates from the benign clients. However, in many practical FL scenarios, data is non-IID across clien ts, thus the updates received from even the benign clients are quite dissimilar. Hence, using similarity based methods result in wasted opportunities to train a model from interesting non-IID data, and also slower model convergence. We propose DiverseFL to overcome this challenge in heterogeneous data distribution settings. Rather than comparing each clients update with other client updates to detect Byzantine clients, DiverseFL compares each clients update with a guiding update of that client. Any client whose update diverges from its associated guiding update is then tagged as a Byzantine node. The FL server in DiverseFL computes the guiding update in every round for each client over a small sample of the clients local data that is received only once before start of the training. However, sharing even a small sample of clients data with the FL server can compromise clients data privacy needs. To tackle this challenge, DiverseFL creates a Trusted Execution Environment (TEE)-based enclave to receive each clients sample and to compute its guiding updates. TEE provides a hardware assisted verification and attestation to each client that its data is not leaked outside of TEE. Through experiments involving neural networks, benchmark datasets and popular Byzantine attacks, we demonstrate that DiverseFL not only performs Byzantine mitigation quite effectively, it also almost matches the performance of OracleSGD, where the server only aggregates the updates from the benign clients.
Heterogeneous systems have become one of the most common architectures today, thanks to their excellent performance and energy consumption. However, due to their heterogeneity they are very complex to program and even more to achieve performance port ability on different devices. This paper presents EngineCL, a new OpenCL-based runtime system that outstandingly simplifies the co-execution of a single massive data-parallel kernel on all the devices of a heterogeneous system. It performs a set of low level tasks regarding the management of devices, their disjoint memory spaces and scheduling the workload between the system devices while providing a layered API. EngineCL has been validated in two compute nodes (HPC and commodity system), that combine six devices with different architectures. Experimental results show that it has excellent usability compared with OpenCL; a maximum 2.8% of overhead compared to the native version under loads of less than a second of execution and a tendency towards zero for longer execution times; and it can reach an average efficiency of 0.89 when balancing the load.
Serverless computing has rapidly grown following the launch of Amazons Lambda platform. Function-as-a-Service (FaaS) a key enabler of serverless computing allows an application to be decomposed into simple, standalone functions that are executed on a FaaS platform. The FaaS platform is responsible for deploying and facilitating resources to the functions. Several of todays cloud applications spread over heterogeneous connected computing resources and are highly dynamic in their structure and resource requirements. However, FaaS platforms are limited to homogeneous clusters and homogeneous functions and do not account for the data access behavior of functions before scheduling. We introduce an extension of FaaS to heterogeneous clusters and to support heterogeneous functions through a network of distributed heterogeneous target platforms called Function Delivery Network (FDN). A target platform is a combination of a cluster of homogeneous nodes and a FaaS platform on top of it. FDN provides Function-Delivery-as-a-Service (FDaaS), delivering the function to the right target platform. We showcase the opportunities such as varied target platforms characteristics, possibility of collaborative execution between multiple target platforms, and localization of data that the FDN offers in fulfilling two objectives: Service Level Objective (SLO) requirements and energy efficiency when scheduling functions by evaluating over five distributed target platforms using the FDNInspector, a tool developed by us for benchmarking distributed target platforms. Scheduling functions on an edge target platform in our evaluation reduced the overall energy consumption by 17x without violating the SLO requirements in comparison to scheduling on a high-end target platform.
An emerging class of data-intensive applications involve the geographically dispersed extraction of complex scientific information from very large collections of measured or computed data. Such applications arise, for example, in experimental physics , where the data in question is generated by accelerators, and in simulation science, where the data is generated by supercomputers. So-called Data Grids provide essential infrastructure for such applications, much as the Internet provides essential services for applications such as e-mail and the Web. We describe here two services that we believe are fundamental to any Data Grid: reliable, high-speed transporet and replica management. Our high-speed transport service, GridFTP, extends the popular FTP protocol with new features required for Data Grid applciations, such as striping and partial file access. Our replica management service integrates a replica catalog with GridFTP transfers to provide for the creation, registration, location, and management of dataset replicas. We present the design of both services and also preliminary performance results. Our implementations exploit security and other services provided by the Globus Toolkit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا