ﻻ يوجد ملخص باللغة العربية
We present the evaluation of two different design configurations of a two-stage PrNi$_5$ continuous nuclear demagnetization refrigerator. Serial and parallel configurations of the two stages are considered, with emphasis on the attainable cooling power at sub-mK temperatures and the impact of the design choices on the operation of the refrigerator. Numerical simulations of heat transfer in the setup are used to evaluate the performance of the refrigerator as well as the technological requirements for the essential thermal links. In accord with similar findings for adiabatic demagnetization refrigerators [Shirron, emph{Cryogenics} textbf{62}, 2014], our simulations show that the performance of both configurations improves as the thermal links improve, and that the parallel configuration yields a higher cooling power than the series design for a given thermal link resistance and sample temperature.
We have successfully developed and tested a compact shielded superconducting (SSC) magnet with a FeCoV magnetic shield. This was developed for the PrNi$_5$ based nuclear demagnetization refrigerator which can keep temperatures below 1 mK continuously
We demonstrate successful dry refrigeration of quantum fluids down to $T=0.16$,mK by using copper nuclear demagnetization stage that is pre-cooled by a pulse-tube-based dilution refrigerator. This type of refrigeration delivers a flexible and simple
The National High Magnetic Field Laboratory (NHMFL) High B/T facility at the University of Florida in Gainesville provides a unique combination of ultra-low temperatures below 1 mK and high magnetic fields up to 16 T for user experiments. To meet the
Optimization techniques for decreasing the time and area of adder circuits have been extensively studied for years mostly in binary logic system. In this paper, we provide the necessary equations required to design a full adder in quaternary logic sy
High-speed serial links implemented in SRAM-based FPGAs have been extensively used in the trigger and data acquisition systems of High Energy Physics experiments. Usually, their application has been restricted to off-detector, mostly due the sensitiv