ﻻ يوجد ملخص باللغة العربية
Phosphorene, a monolayer of black phosphorus (BP), is an elemental two-dimensional material with interesting physical properties, such as high charge carrier mobility and exotic anisotropic in-plane properties. To fundamentally understand these various physical properties, it is critically important to conduct an atomic-scale structural investigation of phosphorene, particularly regarding various defects and preferred edge configurations. However, it has been challenging to investigate mono- and few-layer phosphorene because of technical difficulties arising in the preparation of a high-quality sample and damages induced during the characterization process. Here, we successfully fabricate high-quality monolayer phosphorene using a controlled thinning process with transmission electron microscopy, and subsequently perform atomic-resolution imaging. Graphene protection suppresses the e-beam-induced damage to multi-layer BP and one-side graphene protection facilitates the layer-by-layer thinning of the samples, rendering high-quality monolayer and bilayer regions. We also observe the formation of atomic-scale crystalline edges predominantly aligned along the zigzag and (101) terminations, which is originated from edge kinetics under e-beam-induced sputtering process. Our study demonstrates a new method to image and precisely manipulate the thickness and edge configurations of air-sensitive two-dimensional materials.
There have been continuous efforts to seek for novel functional two-dimensional semiconductors with high performance for future applications in nanoelectronics and optoelectronics. In this work, we introduce a successful experimental approach to fabr
We report on the observation of edge electric currents excited in bi-layer graphene by terahertz laser radiation. We show that the current generation belongs to the class of second order in electric field phenomena and is controlled by the orientatio
We performed density functional theory calculations with self-consistent van der Waals corrected exchange-correlation (XC) functionals to capture the structure of black phosphorus and twelve monochalcogenide monolayers and find the following results:
Black phosphorus (BP) has recently emerged as an alternative 2D semiconductor owing to its fascinating electronic properties such as tunable bandgap and high charge carrier mobility. The structural investigation of few-layer BP, such as identificatio
We consider confinement of Dirac fermions in $AB$-stacked bilayer graphene by inhomogeneous on-site interactions, (pseudo-)magnetic field or inter-layer interaction. Working within the framework of four-band approximation, we focus on the systems whe